Amino Acid Interactions (INTAA) web server v2.0: a single service for computation of energetics and conservation in biomolecular 3D structures
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34019656
PubMed Central
PMC8262704
DOI
10.1093/nar/gkab377
PII: 6279843
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny chemie MeSH
- internet MeSH
- konformace proteinů * MeSH
- molekulární modely MeSH
- proteiny chemie MeSH
- software * MeSH
- statická elektřina MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- proteiny MeSH
Interactions among amino acid residues are the principal contributor to the stability of the three-dimensional structure of a protein. The Amino Acid Interactions (INTAA) web server (https://bioinfo.uochb.cas.cz/INTAA/) has established itself as a unique computational resource, which enables users to calculate the contribution of individual residues in a biomolecular structure to its total energy using a molecular mechanical scoring function. In this update, we describe major additions to the web server which help solidify its position as a robust, comprehensive resource for biomolecular structure analysis. Importantly, a new continuum solvation model was introduced, allowing more accurate representation of electrostatic interactions in aqueous media. In addition, a low-overhead pipeline for the estimation of evolutionary conservation in protein chains has been added. New visualization options were introduced as well, allowing users to easily switch between and interrelate the energetic and evolutionary views of the investigated structures.
Zobrazit více v PubMed
Bendová-Biedermannová L., Hobza P., Vondrášek J.. Identifying stabilizing key residues in proteins using interresidue interaction energy matrix. Proteins. 2008; 72:402–413. PubMed
Vondrášek J., Bendová L., Klusák V., Hobza P.. Unexpectedly strong energy stabilization inside the hydrophobic core of small protein rubredoxin mediated by aromatic residues: correlated ab initio quantum chemical calculations. J. Am. Chem. Soc. 2005; 127:2615–2619. PubMed
Celniker G., Nimrod G., Ashkenazy H., Glaser F., Martz E., Mayrose I., Pupko T., Ben-Tal N.. ConSurf: using evolutionary data to raise testable hypotheses about protein function. Isr. J. Chem. 2013; 53:199–206.
Jakubec D., Vondrášek J., Finn R.D.. 3DPatch: fast 3D structure visualization with residue conservation. Bioinformatics. 2019; 35:332–334. PubMed PMC
Galgonek J., Vymetal J., Jakubec D., Vondrasek J.. Amino Acid Interaction (INTAA) web server. Nucleic. Acids. Res. 2017; 45:W388–W392. PubMed PMC
Berman H., Henrick K., Nakamura H.. Announcing the worldwide protein data bank. Nat. Struct. Mol. Biol. 2003; 10:980–980. PubMed
Mirzaie M. Discrimination power of knowledge-based potential dictated by the dominant energies in native protein structures. Amino Acids. 2019; 51:1029–1038. PubMed
Barik S. The uniqueness of tryptophan in biology: properties, metabolism, interactions and localization in proteins. Int. J. Mol. Sci. 2020; 21:8776. PubMed PMC
Chakrabarty B., Naganathan V., Garg K., Agarwal Y., Parekh N.. NAPS update: network analysis of molecular dynamics data and protein-nucleic acid complexes. Nucleic Acids Res. 2019; 47:W462–W470. PubMed PMC
Musyoka T.M., Njuguna J.N., Bishop Ö.T.. Comparing sequence and structure of falcipains and human homologs at prodomain and catalytic active site for malarial peptide based inhibitor design. Malar. J. 2019; 18:159. PubMed PMC
Chakravarty D., Bihani S.C., Banerjee M., Ballal A.. Novel molecular insights into the anti-oxidative stress response and structure–function of a salt-inducible cyanobacterial Mn-catalase. Plant Cell Environ. 2019; 42:2508–2521. PubMed
Alhamoudi K.M., Bhat J., Nashabat M., Alharbi M., Alyafee Y., Asiri A., Umair M., Alfadhel M.. A missense mutation in the UGDH gene is associated with developmental delay and axial hypotonia. Front. Pediatr. 2020; 8:71. PubMed PMC
Grochowski P., Trylska J.. Continuum molecular electrostatics, salt effects, and counterion binding—a review of the Poisson–Boltzmann theory and its modifications. Biopolymers. 2008; 89:93–113. PubMed
Riley K.E., Vondrášek J., Hobza P.. Performance of the DFT-D method, paired with the PCM implicit solvation model, for the computation of interaction energies of solvated complexes of biological interest. Phys. Chem. Chem. Phys. 2007; 9:5555–5560. PubMed
Onufriev A., Case D.A.. Generalized born implicit solvent models for biomolecules. Annu. Rev. Biophys. 2019; 48:275–296. PubMed PMC
Onufriev A., Case D.A., Bashford D.. Effective born radii in the generalized Born approximation: the importance of being perfect. J. Comput. Chem. 2002; 23:1297–1304. PubMed
Onufriev A., Bashford D., Case D.A.. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins Struct. Funct. Genet. 2004; 55:383–394. PubMed
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E.. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1–2:19–25.
Hamelryck T., Manderick B.. PDB file parser and structure class implemented in Python. Bioinformatics. 2003; 19:2308–2310. PubMed
Cock P.J.A., Antao T., Chang J.T., Chapman B.A., Cox C.J., Dalke A., Friedberg I., Hamelryck T., Kauff F., Wilczynski B., de Hoon M.J.L.. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009; 25:1422–1423. PubMed PMC
The UniProt Consortium UniProt: a worldwide hub of protein knowledge. Nucleic. Acids. Res. 2019; 47:D506–D515. PubMed PMC
Gerstein M., Sonnhammer E.L.L., Chothia C.. Volume changes in protein evolution. J. Mol. Biol. 1994; 236:1067–1078. PubMed
Billeter M., Qian Y.-Q., Otting G., Müller M., Gehring W.J., Wüthrich K.. Determination of the three-dimensional structure of the Antennapedia homeodomain from Drosophila in solution by 1H nuclear magnetic resonance spectroscopy. J. Mol. Biol. 1990; 214:183–197. PubMed
Bürglin T.R., Affolter M.. Homeodomain proteins: an update. Chromosoma. 2016; 125:497–521. PubMed PMC
Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B.L., Grubmüller H., MacKerell A.D. Jr. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods. 2017; 14:71–73. PubMed PMC