Amino Acid Interaction (INTAA) web server
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28472475
PubMed Central
PMC5570164
DOI
10.1093/nar/gkx352
PII: 3787858
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny chemie MeSH
- DNA vazebné proteiny chemie MeSH
- DNA chemie MeSH
- internet MeSH
- nukleotidy chemie MeSH
- software * MeSH
- stabilita proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- DNA vazebné proteiny MeSH
- DNA MeSH
- nukleotidy MeSH
Large biomolecules-proteins and nucleic acids-are composed of building blocks which define their identity, properties and binding capabilities. In order to shed light on the energetic side of interactions of amino acids between themselves and with deoxyribonucleotides, we present the Amino Acid Interaction web server (http://bioinfo.uochb.cas.cz/INTAA/). INTAA offers the calculation of the residue Interaction Energy Matrix for any protein structure (deposited in Protein Data Bank or submitted by the user) and a comprehensive analysis of the interfaces in protein-DNA complexes. The Interaction Energy Matrix web application aims to identify key residues within protein structures which contribute significantly to the stability of the protein. The application provides an interactive user interface enhanced by 3D structure viewer for efficient visualization of pairwise and net interaction energies of individual amino acids, side chains and backbones. The protein-DNA interaction analysis part of the web server allows the user to view the relative abundance of various configurations of amino acid-deoxyribonucleotide pairs found at the protein-DNA interface and the interaction energies corresponding to these configurations calculated using a molecular mechanical force field. The effects of the sugar-phosphate moiety and of the dielectric properties of the solvent on the interaction energies can be studied for the various configurations.
Zobrazit více v PubMed
Bendova-Biedermannova L., Hobza P., Vondrasek J.. Identifying stabilizing key residues in proteins using interresidue interaction energy matrix. Proteins. 2008; 72:402–413. PubMed
Vondrasek J., Bendova L., Klusak V., Hobza P.. Unexpectedly strong energy stabilization inside the hydrophobic core of small protein rubredoxin mediated by aromatic residues: correlated ab initio quantum chemical calculations. J. Am. Chem. Soc. 2005; 127:2615–2619. PubMed
Kaminski G.A., Friesner R.A., Tirado-Rives J., Jorgensen W.L.. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B. 2001; 105:6474–6487.
Duan Y., Wu C., Chowdhury S., Lee M.C., Xiong G., Zhang W., Yang R., Cieplak P., Luo R., Lee T. et al. . A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 2003; 24:1999–2012. PubMed
Berka K., Laskowski R.A., Hobza P., Vondrasek J.. Energy matrix of structurally important side-chain/side-chain interactions in proteins. J. Chem. Theory Comput. 2010; 6:2191–2203. PubMed
Berka K., Laskowski R., Riley K.E., Hobza P., Vondrasek J.. Representative amino acid side chain interactions in proteins. A comparison of highly accurate correlated ab initio quantum chemical and empirical potential procedures. J. Chem. Theory Comput. 2009; 5:982–992. PubMed
Fackovec B., Vondrasek J.. Optimal definition of inter-residual contact in globular proteins based on pairwise interaction energy calculations, its robustness, and applications. J. Phys. Chem. B. 2012; 116:12651–12660. PubMed
Kysilka J., Vondrasek J.. Towards a better understanding of the specificity of protein-protein interaction. J. Mol. Recognit. 2012; 25:604–615. PubMed
Wang J., Cieplak P., Kollman P.A.. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?. J. Comput. Chem. 2000; 21:1049–1074.
Best R.B., Zhu X., Shim J., Lopes P.E., Mittal J., Feig M., Mackerell A.D. Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput. 2012; 8:3257–3273. PubMed PMC
Vymetal J., Vondrasek J.. Parametrization of 2,2,2-trifluoroethanol based on the generalized AMBER force field provides realistic agreement between experimental and calculated properties of pure liquid as well as water-mixed solutions. J. Phys. Chem. B. 2014; 118:10390–10404. PubMed
Vymetal J., Vondrasek J.. Critical assessment of current force fields. Short peptide test case. J. Chem. Theory Comput. 2013; 9:441–451. PubMed
Vymetal J., Vondrasek J.. Metadynamics as a tool for mapping the conformational and free-energy space of peptides—the alanine dipeptide case study. J. Phys. Chem. B. 2010; 114:5632–5642. PubMed
Word J.M., Lovell S.C., Richardson J.S., Richardson D.C.. Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J. Mol. Biol. 1999; 285:1735–1747. PubMed
Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M., Ferguson D.M., Spellmeyer D.C., Fox T., Caldwell J.W., Kollman P.A.. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995; 117:5179–5197.
Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J.L., Dror R.O., Shaw D.E.. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010; 78:1950–1958. PubMed PMC
Jakubec D., Laskowski R.A., Vondrasek J.. Sequence-specific recognition of DNA by proteins: Binding motifs discovered using a novel statistical/computational analysis. PLoS One. 2016; 11:e0158704. PubMed PMC
Jakubec D., Hostas J., Laskowski R.A., Hobza P., Vondrasek J.. Large-scale quantitative assessment of binding preferences in protein-nucleic acid complexes. J. Chem. Theory Comput. 2015; 11:1939–1948. PubMed
Bernstein F.C., Koetzle T.F., Williams G.J., Meyer E.F. Jr, Brice M.D., Rodgers J.R., Kennard O., Shimanouchi T., Tasumi M.. The Protein Data Bank. A computer-based archival file for macromolecular structures. Eur. J. Biochem. 1977; 80:319–324. PubMed
Luscombe N.M., Laskowski R.A., Thornton J.M.. Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res. 2001; 29:2860–2874. PubMed PMC
Biasini M. pv: v1.8.1. 2015; doi:10.5281/zenodo.20980.