Waste Brick Dust as Potential Sorbent of Lead and Cesium from Contaminated Water
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-13778S
Grantová Agentura České Republiky
19-11027S
Grantová Agentura České Republiky
PubMed
31137567
PubMed Central
PMC6566355
DOI
10.3390/ma12101647
PII: ma12101647
Knihovny.cz E-zdroje
- Klíčová slova
- adsorption, cesium, lead, precipitation, solid-state NMR spectroscopy, surface complexation, waste brick dust,
- Publikační typ
- časopisecké články MeSH
Adsorption properties of waste brick dust (WBD) were studied by the removing of PbII and CsI from an aqueous system. For adsorption experiments, 0.1 M and 0.5 M aqueous solutions of Cs+ and Pb2+ and two WBD (Libochovice-LB, and Tyn nad Vltavou-TN) in the fraction below 125 µm were used. The structural and surface properties of WBD were characterized by X-ray diffraction (XRD) in combination with solid-state nuclear magnetic resonance (NMR), supplemented by scanning electron microscopy (SEM), specific surface area (SBET), total pore volume and zero point of charge (pHZPC). LB was a more amorphous material showing a better adsorption condition than that of TN. The adsorption process indicated better results for Pb2+, due to the inner-sphere surface complexation in all Pb2+ systems, supported by the formation of insoluble Pb(OH)2 precipitation on the sorbent surface. A weak adsorption of Cs+ on WBD corresponded to the non-Langmuir adsorption run followed by the outer-sphere surface complexation. The leachability of Pb2+ from saturated WBDs varied from 0.001% to 0.3%, while in the case of Cs+, 4% to 12% of the initial amount was leached. Both LB and TN met the standards for PbII adsorption, yet completely failed for any CsI removal from water systems.
Zobrazit více v PubMed
Wong C.S.C., Li X.D. Pb contamination and isotopic composition of urban soils in Hong Kong. Sci. Total Environ. 2004;319:185–195. doi: 10.1016/S0048-9697(03)00403-0. PubMed DOI
Jiang M., Wang Q., Jin X., Chen Z. Removal of Pb(II) from aqueous solution using modified and unmodified kaolinite clay. J. Hazard. Mater. 2009;170:332–339. doi: 10.1016/j.jhazmat.2009.04.092. PubMed DOI
Benedicto A., Missana T., Fernández A.M. Interlayer Collapse Affects on Cesium Adsorption onto Illite. Environ. Sci. Technol. 2014;48:4909–4915. doi: 10.1021/es5003346. PubMed DOI
Cornell R.M. Adsorption of cesium on minerals: A review. J. Radioanal. Nuclear Chem. 1993;171:483–500. doi: 10.1007/BF02219872. DOI
Dahiya S., Tripathi R.M., Hegde A.G. Biosorption of heavy metals and radionuclide from aqueous solutions by pre-treated arcashell biomass. J. Hazard. Mater. 2008;150:376–386. doi: 10.1016/j.jhazmat.2007.04.134. PubMed DOI
Honeyman B.D., Santsch P.H. Metals in aquatic environment. Environ. Sci. Technol. 1988;22:862–871. doi: 10.1021/es00173a002. PubMed DOI
Song K.C., Lee H.K., Moon H., Lee K.J. Simultaneous removal of the radiotoxic nuclides 137Cs & 129I from aqueous solution. Sep. Purif. Technol. 1997;12:215–217.
Jalali R.R., Ghafourian H., Asef Y., Dalir S.T., Sahafipour M.H., Gharanjik B.M. Biosorption of cesium by native and chemically modified biomass of marine algae: Introduce the new biosorbent for biotechnology applications. J. Hazard. Mater. 2004;B116:125–134. doi: 10.1016/j.jhazmat.2004.08.022. PubMed DOI
Han R., Lu Z., Zou W., Daotong W., Shi J., Jiujun Y. Removal of copper(II) and lead(II) from aqueous solution by manganese oxide coated sand. II. Equilibrium study and competitive adsorption. J. Hazard. Mater. 2006;B137:480–488. doi: 10.1016/j.jhazmat.2006.02.018. PubMed DOI
Mousavi H.Z., Seyedi S.R. Kinetic and equilibrium studies on the removal of Pb(II) from aqueous solution using nettle ash. J. Chil. Chem. Soc. 2010;55:307–311. doi: 10.4067/S0717-97072010000300006. DOI
Ding D., Lei Z., Yang Y., Feng C., Zhang Z. Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue–walnut shell. J. Hazard. Mater. 2014;270:187–195. doi: 10.1016/j.jhazmat.2014.01.056. PubMed DOI
Badescu I.S., Bulgariu D., Ahmad I., Bulgariu L. Valorisation possibilities of exhausted biosorbents loaded with metal ions—A review. J. Environ. Manag. 2018;224:288–297. doi: 10.1016/j.jenvman.2018.07.066. PubMed DOI
Silva R.V., de Brito J., Dhir R.K. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Con. Build. Mat. 2014;65:201–217. doi: 10.1016/j.conbuildmat.2014.04.117. DOI
Vejmelková E., Keppert M., Rovnaníková P., Ondráček M., Keršner Z., Černý R. Properties of high performance concrete containing fine-ground ceramics as supplementary cementitious material. Cement Concrete Compos. 2012;34:55–61. doi: 10.1016/j.cemconcomp.2011.09.018. DOI
Dousova B., Kolousek D., Keppert M., Machovic V., Lhotka M., Urbanova M., Brus J., Holcova L. Use of waste ceramics in adsorption technologies. Appl. Clay Sci. 2016;134:145–152. doi: 10.1016/j.clay.2016.02.016. DOI
Doušová B., Grygar T., Martaus A., Fuitová L., Koloušek D., Machovič V. Sorption of AsV on aluminosilicates treated with FeII nanoparticles. J. Colloid Interface Sci. 2006;302:424–431. doi: 10.1016/j.jcis.2006.06.054. PubMed DOI
Jeong Y., Fan M., Singh S., Chuang C.L., Saha B., van Leeuwen J.H. Evaluation of iron oxide and aluminium oxide as potential arsenic(V) adsorbents. Chem. Eng. Process. 2007;46:1030–1039. doi: 10.1016/j.cep.2007.05.004. DOI
Misak N.Z. Langmuir isotherm and its application in ion-exchange reactions. React. Polym. 1993;21:53–64. doi: 10.1016/0923-1137(93)90054-J. DOI
CEN 2002 CEN 2002. Characterization of Waste-Leaching-Compliance Test for Leaching of Granular Waste Material and Sludge Part 2. Comite Europeen de Normalisation 2002, EN 12457-2. [(accessed on 1 October 2003)]; Available online: https://www.sis.se/en/produkter/environment-health-protection-safety/wastes/solid-wastes/ssen124574/
Massiot D., Farnan I., Gautier N., Trumeau D., Trokiner A., Coutures J.P. Ga-71 and Ga-69 Nuclear-Magnetic-Resonance Study of Beta-Ga2O3-Resolution of 4-Fold and 6-Fold Coordinated Ga Sites in Static Conditions. Solid State Nucl. Magn. Reson. 1995;4:241–248. doi: 10.1016/0926-2040(95)00002-8. PubMed DOI
Brus J. Heating of samples induced by fast magic-angle spinning. Solid State Nucl. Magn. Reson. 2000;16:151–160. doi: 10.1016/S0926-2040(00)00061-8. PubMed DOI
Walther J.V. Essentials of Geochemistry. 2nd ed. Jones and Bartlett Publishers Inc.; Sudbury, MA, USA: 2009. 486p
Bohn H.L., Mc Neal B.L., O’Conner G.A. Soil Chemistry. 2nd ed. John Wiley and Sons; New York, NY, USA: 1985. 341p
Um W., Papelis C. Sorption mechanisms of Sr(II) and Pb(II) on zeolitized tuffs from the Nevada Test Site as a function of pH and ionic strength. Am. Mineral. 2003;88:2028–2039. doi: 10.2138/am-2003-11-1247. DOI
Marcus Y. Thermodynamics of Solvation of Ions. J. Chem. Soc. Faraday Trans. 1991;87:2995–2999. doi: 10.1039/FT9918702995. DOI
Ding M., de Jong B.H.W.S., Roosendaal S.J., Vredenberg A. XPS studies on the electronic structure of bonding between solid and solutes: Adsorption of arsenate, chromate, phosphate, Pb2+, and Zn2+ ions on amorphous black ferric oxyhydroxide. Geochim. Cosmochim. Acta. 2000;64:1209–1219. doi: 10.1016/S0016-7037(99)00386-5. DOI
Wen X., Du Q., Tang H. Surface complexation model for the heavy metal adsorption on natural sediment. Environ. Sci. Technol. 1998;32:870–875. doi: 10.1021/es970098q. DOI
Fayon F., Farnan I., Bessada C., Coutures J., Massiot D., Coutures J.P. Empirical Correlations between 207Pb NMR Chemical Shifts and Structure in Solids. J. Am. Chem. Soc. 1997;119:6837–6843. doi: 10.1021/ja963593f. DOI
Rajec P., Macasek F., Feder M., Misaelides P., Samajova E. Sorption of caesium and strontium on clinoptilolite- and mordenite-containing sedimentary rocks. J. Radioanal. Nucl. Chem. 1998;229:49–56. doi: 10.1007/BF02389445. DOI
Faghihian H., Marageh M.G., Kazemian H. The use of clinoptilolite and its sodium form for removal of radioactive cesium and strontium from nuclear wastewater and Pb2+, Ni2+, Cd2+, Ba2+ from municipal wastewater. Appl. Radiat. Isotopes. 1999;50:655–660. doi: 10.1016/S0969-8043(98)00134-1. PubMed DOI
Bergaoui L., Lambert J.F., Prost R. Caesium adsorption on soil clay: Macroscopic and spectroscopic measurements. Appl. Clay Sci. 2005;29:23–29. doi: 10.1016/j.clay.2004.09.002. DOI
Adsorption of Phosphate and Ammonium on Waste Building Sludge