Adsorption of Phosphate and Ammonium on Waste Building Sludge
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TH79020001
Technology Agency of the Czech Republic
TH79020001
Ministry of Industry and Trade
PubMed
36837078
PubMed Central
PMC9968144
DOI
10.3390/ma16041448
PII: ma16041448
Knihovny.cz E-zdroje
- Klíčová slova
- Fe-modification, adsorption, waste building sludge,
- Publikační typ
- časopisecké články MeSH
Two selected waste building sludges (WBS) were used in this study: (i) sludge from the production and processing of prestressed concrete pillars (B) and (ii) sludge from the production of technical stone (TS). The materials were used in their original and Fe-modified forms (BFe/TSFe) for the adsorption of NH4+ and PO43- from contaminated waters. The experiments were performed on a model solution simulating real wastewater with a concentration of 1.7 mmol·L-1 (NH4+) and 0.2 mmol·L-1 (PO43-). The adsorption of PO43- had a high efficiency (>99%) on B, BFe and TSFe, while for TS, the adsorption of PO43- was futile due to the high content of available P in the raw TS. The adsorption of NH4+ on all sorbents (B/BFe, TS/TSFe) had a lower efficiency (<60%), while TS proved to be the most effective. Leaching tests were performed according to the CSN EN 12457 standard for B/BFe and TS/TSFe before and after NH4+ and PO43- sorption when the contents of these ions in the leachates were affected by adsorption experiments in the cases of B and TS. For BFe and TSFe, the ion content in the leachates before and after the adsorption experiments was similar.
Zobrazit více v PubMed
Correia S., Souza F., Dienstmann G., Segadães A. Assessment of the recycling potential of fresh concrete waste using a factorial design of experiments. Waste Manag. 2009;29:2886–2891. doi: 10.1016/j.wasman.2009.06.014. PubMed DOI
Xuan D., Zhan B., Poon C.S., Zheng W. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products. J. Hazard. Mater. 2016;312:65–72. doi: 10.1016/j.jhazmat.2016.03.036. PubMed DOI
dos Reis G.S., Thue P.S., Cazacliu B.G., Lima E.C., Sampaio C.H., Quattrone M., Ovsyannikova E., Kruse A., Dotto G.L. Effect of concrete carbonation on phosphate removal through adsorption process and its potential application as fertilizer. J. Clean. Prod. 2020;256:120416. doi: 10.1016/j.jclepro.2020.120416. DOI
Doušová B., Bedrnová E., Reiterman P., Keppert M., Koloušek D., Lhotka M., Mastný L. Adsorption Properties of Waste Building Sludge for Environmental Protection. Minerals. 2021;11:309.
Martins V.J., Garcia S.C.D., Aguilar P.T.M., José dos Santos W. Influence of replacing Portland cement with three different concrete sludge wastes. Constr. Build. Mater. 2021;303:124519. doi: 10.1016/j.conbuildmat.2021.124519. DOI
Schoon J., De Buysser K., Van Driessche I., De Belie N. Feasibility Study of the Use of Concrete Sludge As Alternative Raw Material for Portland Clinker Production. J. Mater. Civ. Eng. 2015;27:04014272. doi: 10.1061/(asce)mt.1943-5533.0001230. DOI
Yang Z.X., Ha N.R., Hwang K.H., Lee J.K. A Study of the performance of a concrete sludge-based geopolymer. J. Ceram. Process. Res. 2009;10:S72–S74.
Dos Reis S.G., Cazacliu G.B., Correa R.C., Ovsyannikova E., Andrea Kruse A., Sampaio H.C., Lima C.E., Dotto L.G. Ad-sorption and recovery of phosphate from aqueous solution by the construction and demolition wastes sludge and its potential use as phosphate-based fertilizer. J. Environ. Chem. Eng. 2020;8:103605.
Doušová B., Reiterman P., Keppert M., Lhotka M., Koloušek D., Mastný L., Bedrnová E. Assumptions of Powdered Building Wastes for Selective Adsorption of Lead and Cesium from Water. AIP Conf. Proc. 2020;2210:020006.
Sun D., Hale L., Kar G., Soolanayakanahally R., Adl S. Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment. Chemosphere. 2018;194:682–691. doi: 10.1016/j.chemosphere.2017.12.035. PubMed DOI
Guaya D., Cobos H., Camacho J., López C.M., Valderrama C., Cortina J.L. LTA and FAU-X Iron-Enriched Zeolites: Use for Phosphate Removal from Aqueous Medium. Materials. 2022;15:5418. doi: 10.3390/ma15155418. PubMed DOI PMC
Hermassi M., Valderrama C., Moreno N., Font O., Querol X., Batis N.H., Cortina J.L. Fly ash as reactive sorbent for phosphate removal from treated waste water as a potential slow release fertilizer. J. Environ. Chem. Eng. 2016;5:160–169. doi: 10.1016/j.jece.2016.11.027. DOI
Iqhrammullah M., Saleha S., Maulina F.P., Idroes R. Polyurethane film prepared from ball-milled algal polyol particle and activated carbon filler for NH3–N removal. Heliyon. 2020;6:e04590. doi: 10.1016/j.heliyon.2020.e04590. PubMed DOI PMC
Doušová B., Koloušek D., Lhotka M., Keppert M., Urbanová M., Kobera L., Brus J. Waste Brick Dust as Potential Sorbent of Lead and Cesium from Contaminated Water. Materials. 2019;12:1647. doi: 10.3390/ma12101647. PubMed DOI PMC
Doušová B., Koloušek D., Keppert M., Machovic V., Lhotka M., Urbanova M., Holcova L. Use of waste ceramics in ad-sorption technologies. Appl. Clay Sci. 2016;8:145–152. doi: 10.1016/j.clay.2016.02.016. DOI
Jeong Y., Fan M., Singh S., Chuang C.-L., Saha B., van Leeuwen J.H. Evaluation of iron oxide and aluminum oxide as potential arsenic(V) adsorbents. Chem. Eng. Process.-Process Intensif. 2007;46:1030–1039. doi: 10.1016/j.cep.2007.05.004. DOI
Wang C., Boithias L., Ning Z., Han Y., Sauvage S., Sánchez-Pérez J.-M., Kuramochi K., Hatano R. Comparison of Langmuir and Freundlich adsorption equations within the SWAT-K model for assessing potassium environmental losses at basin scale. Agric. Water Manag. 2017;180:205–211. doi: 10.1016/j.agwat.2016.08.001. DOI
Maji S.K., Pal A., Pal T. Arsenic removal from real-life groundwater by adsorption on laterite soil. J. Hazard. Mater. 2008;151:811–820. doi: 10.1016/j.jhazmat.2007.06.060. PubMed DOI
Doušová B., Grygar T., Martaus A., Fuitová L., Koloušek D., Machovič V. Sorption of AsV on aluminosilicates treated with FeII nanoparticles. J. Colloid Interface Sci. 2006;302:424–431. PubMed
Bonnin D. Method of removing arsenic species from an aqueous medium using modified zeolite minerals. No. 6,042,731. U.S. Patent. 2000 March 28;
Doušová B., Fuitová L., Grygar T., Machovič V., Koloušek D., Herzogová L., Miloslav L. Modified aluminosilicates as low-cost sorbents of As(III) from anoxic groundwater. J. Hazard. Mater. 2009;165:134–140. PubMed
Doušová B., Machovič V., Lhotka M., Reiterman P., Bedrnová E., Koloušek D. Mechanism of chromate adsorption on Fe-modified concrete slurry waste. Colloids Surf. A. 2022;650:129650. doi: 10.1016/j.colsurfa.2022.129650. DOI
CEN . Characterization of Waste-Leaching-Compliance Test for Leaching of Granular Waste Materials and Sludges. Part 2. One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size below 4 mm (without or with Size Reduction), EN 12457-2. Comite Europeen de Normalisation; Brussels, Belgium: 2002.
Stanovení Amoniakálního Dusíku ve Vodě, 2007. Masarykova Střední Škola Chemická: Návody na Chemické Rozbory. [(accessed on 2 February 2022)]. Available online: http://old.mssch.cz/2004-2009/old.mssch.cz/index9b0f.html?kat=189&idclanek=692.
Malát M. Absorpční Anorganická Fotometrie. Academia; Prague, Czech Republic: 1973. Metody stanovení fosforu; pp. 470–473.