Structural and functional MRI correlates of T2 hyperintensities of brain white matter in young neurologically asymptomatic adults
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
AZV-15-32133A
Agentura Pro Zdravotnický Výzkum České Republiky
Funds to junior researcher
Lékařská fakulta, Masarykova univerzita
PubMed
31144071
DOI
10.1007/s00330-019-06268-8
PII: 10.1007/s00330-019-06268-8
Knihovny.cz E-zdroje
- Klíčová slova
- Diffusion tensor imaging, Functional magnetic resonance imaging, Healthy volunteers, White matter,
- MeSH
- asymptomatické nemoci MeSH
- bílá hmota patologie MeSH
- difuzní magnetická rezonance metody MeSH
- dospělí MeSH
- leukoaraióza diagnóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- šedá hmota patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVES: Although white matter hyperintensities (WMHs) are quite commonly found incidentally, their aetiology, structural characteristics, and functional consequences are not entirely known. The purpose of this study was to quantify WMHs in a sample of young, neurologically asymptomatic adults and evaluate the structural and functional correlations of lesion load with changes in brain volume, diffusivity, and functional connectivity. METHODS: MRI brain scan using multimodal protocol was performed in 60 neurologically asymptomatic volunteers (21 men, 39 women, mean age 34.5 years). WMHs were manually segmented in 3D FLAIR images and counted automatically. The number and volume of WMHs were correlated with brain volume, resting-state functional MRI (rs-fMRI), and diffusion tensor imaging (DTI) data. Diffusion parameters measured within WMHs and normally appearing white matter (NAWM) were compared. RESULTS: At least 1 lesion was found in 40 (67%) subjects, median incidence was 1 lesion (interquartile range [IQR] = 4.5), and median volume was 86.82 (IQR = 227.23) mm3. Neither number nor volume of WMHs correlated significantly with total brain volume or volumes of white and grey matter. Mean diffusivity values within WMHs were significantly higher compared with those for NAWM, but none of the diffusion parameters of NAWM were significantly correlated with WMH load. Both the number and volume of WMHs were correlated with the changes of functional connectivity between several regions of the brain, mostly decreased connectivity of the cerebellum. CONCLUSIONS: WMHs are commonly found even in young, neurologically asymptomatic adults. Their presence is not associated with brain atrophy or global changes of diffusivity, but the increasing number and volume of these lesions correlate with changes of brain connectivity, and especially that of the cerebellum. KEY POINTS: • White matter hyperintensities (WMHs) are commonly found in young, neurologically asymptomatic adults. • The presence of WMHs is not associated with brain atrophy or global changes of white matter diffusivity. • The increasing number and volume of WMHs correlate with changes of brain connectivity, and especially with that of the cerebellum.
Behavioural and Social Neuroscience CEITEC MU Brno Czech Republic
Department of Biophysics Masaryk University Brno Czech Republic
Department of Neurology The University Hospital Brno and Masaryk University Brno Czech Republic
Department of Psychiatry The University Hospital Brno and Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Acta Radiol. 2015 May;56(5):622-7 PubMed
Agri. 2017 Oct;29(4):157-161 PubMed
Psychol Rep. 1966 Aug;19(1):3-11 PubMed
Front Neurol. 2017 Nov 09;8:593 PubMed
Brain Connect. 2012;2(3):125-41 PubMed
Neurology. 2009 Mar 3;72(9):800-5 PubMed
Neuroimage. 2004;23 Suppl 1:S208-19 PubMed
Neurology. 2001 Jun 12;56(11):1539-45 PubMed
Neurobiol Aging. 2015 Feb;36(2):909-18 PubMed
Neurology. 1993 Sep;43(9):1683-9 PubMed
J Neuroimaging. 2006 Jul;16(3):243-51 PubMed
Int J Geriatr Psychiatry. 2009 Feb;24(2):109-17 PubMed
Hum Brain Mapp. 2012 Sep;33(9):2062-71 PubMed
Rofo. 2014 May;186(5):484-8 PubMed
Stroke. 1996 Aug;27(8):1274-82 PubMed
Stroke. 2000 Sep;31(9):2182-8 PubMed
Neurodegener Dis. 2016;16(3-4):279-83 PubMed
J Neurol Neurosurg Psychiatry. 2005 Mar;76(3):362-7 PubMed
Neural Plast. 2017;2017:4050536 PubMed
Eur Neurol. 1989;29(3):164-8 PubMed
JAMA. 1999 Jul 7;282(1):36-9 PubMed
Br J Radiol. 2014 Mar;87(1035):20130360 PubMed
Neuroimage. 2006 Feb 15;29(4):1031-9 PubMed
J Neurol. 2006 Aug;253(8):1064-70 PubMed
Lancet Neurol. 2018 Feb;17(2):162-173 PubMed
Arch Neurol. 1995 Feb;52(2):191-4 PubMed
J Alzheimers Dis. 2018;63(2):515-527 PubMed
Ann Neurol. 1991 Dec;30(6):825-30 PubMed
Cerebrovasc Dis. 2009;28(2):177-84 PubMed
Hum Brain Mapp. 2009 Apr;30(4):1155-67 PubMed
Stroke. 1986 Nov-Dec;17(6):1084-9 PubMed
Cerebellum. 2007;6(3):184-92 PubMed
J Neurol Neurosurg Psychiatry. 2001 Jan;70(1):9-14 PubMed
J Clin Neurosci. 2011 Aug;18(8):1101-6 PubMed
Neuroimage. 2002 Sep;17(1):479-89 PubMed
Brain. 2016 Apr;139(Pt 4):1164-79 PubMed
Cerebrovasc Dis. 2008;25(1-2):59-66 PubMed
J Stroke Cerebrovasc Dis. 2018 Aug;27(8):2059-2066 PubMed
AJNR Am J Neuroradiol. 2016 Jun;37(6):1017-22 PubMed
BMJ Open. 2017 Dec 29;7(12):e018328 PubMed
Am J Psychiatry. 1992 May;149(5):620-5 PubMed
Curr Opin Neurobiol. 1992 Dec;2(6):802-6 PubMed