Age-Related Oxidative Changes in Primary Porcine Fibroblasts Expressing Mutated Huntingtin
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
31167196
DOI
10.1159/000500091
PII: 000500091
Knihovny.cz E-zdroje
- Klíčová slova
- Permeability, DNA damage, Huntington’s disease, Large-animal model, Minipig model, Mutated huntingtin, Oxidative stress, Primary fibroblasts, Proliferation,
- MeSH
- buněčné dělení MeSH
- fenotyp MeSH
- fibroblasty metabolismus MeSH
- geneticky modifikovaná zvířata MeSH
- lidé MeSH
- miniaturní prasata MeSH
- mitochondriální DNA genetika MeSH
- N-glykosylhydrolasy biosyntéza genetika MeSH
- oxidační stres MeSH
- peroxidace lipidů MeSH
- poškození DNA MeSH
- prasata MeSH
- primární buněčná kultura MeSH
- protein huntingtin genetika metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- regulace genové exprese MeSH
- stárnutí metabolismus MeSH
- superoxiddismutasa biosyntéza genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- HTT protein, human MeSH Prohlížeč
- mitochondriální DNA MeSH
- N-glykosylhydrolasy MeSH
- protein huntingtin MeSH
- reaktivní formy kyslíku MeSH
- superoxiddismutasa MeSH
- superoxide dismutase 2 MeSH Prohlížeč
BACKGROUND: Huntington's disease (HD) is a devastating neurodegenerative disorder caused by CAG triplet expansions in the huntingtin gene. Oxidative stress is linked to HD pathology, although it is not clear whether this is an effect or a mediator of disease. The transgenic (TgHD) minipig expresses the N-terminal part of human-mutated huntingtin and represents a unique model to investigate therapeutic strategies towards HD. A more detailed characterization of this model is needed to fully utilize its potential. METHODS: In this study, we focused on the molecular and cellular features of fibroblasts isolated from TgHD minipigs and the wild-type (WT) siblings at different ages, pre-symptomatic at the age of 24-36 months and with the onset of behavioural symptoms at the age of 48 months. We measured oxidative stress, the expression of oxidative stress-related genes, proliferation capacity along with the expression of cyclin B1 and D1 proteins, cellular permeability, and the integrity of the nuclear DNA (nDNA) and mitochondrial DNA in these cells. RESULTS: TgHD fibroblasts isolated from 48-month-old animals showed increased oxidative stress, which correlated with the overexpression of SOD2 encoding mitochondrial superoxide dismutase 2, and the NEIL3 gene encoding DNA glycosylase involved in replication-associated repair of oxidized DNA. TgHD cells displayed an abnormal proliferation capacity and permeability. We further demonstrated increased nDNA damage in pre-symptomatic TgHD fibroblasts (isolated from animals aged 24-36 months). CONCLUSIONS: Our results unravel phenotypic alterations in primary fibroblasts isolated from the TgHD minipig model at the age of 48 months. Importantly, nDNA damage appears to precede these phenotypic alterations. Our results highlight the impact of fibroblasts from TgHD minipigs in studying the molecular mechanisms of HD pathophysiology that gradually occur with age.
Department of Cell Biology Faculty of Science Charles University Prague Prague Czechia
Department of Medical Biochemistry University of Oslo and Oslo University Hospital Oslo Norway
Department of Microbiology Oslo University Hospital Oslo Norway
Citace poskytuje Crossref.org