Involvement of Phenolic Acids in Short-Term Adaptation to Salinity Stress is Species-Specific among Brassicaceae
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IP-2014-09-4359
Hrvatska Zaklada za Znanost
18-07563S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000738
European Regional Development Fund
PubMed
31174414
PubMed Central
PMC6631191
DOI
10.3390/plants8060155
PII: plants8060155
Knihovny.cz E-zdroje
- Klíčová slova
- Brassica crops, carotenoids, glucosinolates, phenolic acids, polyphenols, salinity stress, seedlings, tolerance,
- Publikační typ
- časopisecké články MeSH
Salinity is a major abiotic stress negatively affecting plant growth and consequently crop production. The effects of short-term salt stress were evaluated on seedlings of three globally important Brassica crops-Chinese cabbage (Brassica rapa ssp. pekinensis), white cabbage (Brassica oleracea var. capitata), and kale (Brassica oleracea var. acephala)-with particular focus on phenolic acids. The physiological and biochemical stress parameters in the seedlings and the levels of three main groups of metabolites (total glucosinolates, carotenoids, and phenolics) and individual phenolic acids were determined. The salt treatments caused a dose-dependent reduction in root growth and biomass and an increase in stress parameters (Na+/K+ ratio, reactive oxygen species (ROS) and glutathione (GSH)) in all seedlings but most prominently in Chinese cabbage. Based on PCA, specific metabolites grouped close to the more tolerant species, white cabbage and kale. The highest levels of phenolic acids, particularly hydroxycinnamic acids, were determined in the more tolerant kale and white cabbage. A reduction in caffeic, salicylic, and 4-coumaric acid was found in Chinese cabbage and kale, and an increase in ferulic acid levels was found in kale upon salinity treatments. Phenolic acids are species-specific among Brassicaceae, and some may participate in stress tolerance. Salt-tolerant varieties have higher levels of some phenolic acids and suffer less from metabolic stress disorders under salinity stress.
Department of Botany Faculty of Science Rooseveltov trg 6 10000 Zagreb Croatia
Department of Molecular Biology Ruđer Bošković Institute Bijenička c 54 10000 Zagreb Croatia
Zobrazit více v PubMed
Zhang X., Lu G., Long W., Zou Y., Li F., Nishio T. Recent progress in drought and salt tolerance studies in Brassica crops. Breed. Sci. 2014;64:60–73. doi: 10.1270/jsbbs.64.60. PubMed DOI PMC
Munns R., Gilliham M. Salinity tolerance of crops—What is the cost? New Phytol. 2015;208:668–673. doi: 10.1111/nph.13519. PubMed DOI
Daliakopoulos I.N., Panagea I.S., Tsanis I.K., Grillakis M.G., Koutroulis A.G., Hessel R., Mayor A.G., Ritsema C.J. Yield response of Mediteranean rangelands under a changing climate. Land Degrad. Dev. 2017;28:1962–1972. doi: 10.1002/ldr.2717. DOI
Iqbal N., Umar S., Khan N.A. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea) J. Plant Physiol. 2015;178:84–91. doi: 10.1016/j.jplph.2015.02.006. PubMed DOI
Velasco P., Francisco M., Moreno D.A., Ferreres F., García-Viguera C., Cartea M.E. Phytochemical fingerprinting of vegetable Brassica oleracea and Brassica napus by simultaneous identification of glucosinolates and phenolics. Phytochem. Anal. 2011;22:144–152. doi: 10.1002/pca.1259. PubMed DOI
Šamec D., Pavlović I., Salopek-Sondi B. White cabbage (Brassica oleracea var. capitata f. alba): Botanical, phytochemical and pharmacologicall overwiev. Phytochem. Rev. 2017;16:117–135.
Šamec D., Pavlović I., Radojčić Redovniković I., Salopek-Sondi B. Comparative analysis of phytochemicals and activity of endogenous enzymes associated with their stability, bioavailability and food quality in five Brassicaceae sprouts. Food Chem. 2018;269:96–102. doi: 10.1016/j.foodchem.2018.06.133. PubMed DOI
Šamec D., Urlić B., Salopek-Sondi B. Kale (Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement. Crit. Rev. Food Sci. Nutr. 2018 in press. PubMed
Xiao Z., Rausch S., Luo Y., Sun J., Yu L., Wang Q., Chen P., Yu L., Stommel J.R. Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. LWT Food Sci. Technol. 2019;101:731–737. doi: 10.1016/j.lwt.2018.10.076. DOI
Cartea M.E., Velasco P. Glucosinolates in Brassica foods: Bioavailability in food and significance for human health. Phytochem. Rev. 2008;7:213–229. doi: 10.1007/s11101-007-9072-2. DOI
Cartea M.E., Francisco M., Soengas P., Velasco P. Phenolic compounds in Brassica vegetables. Molecules. 2011;16:251–280. doi: 10.3390/molecules16010251. PubMed DOI PMC
Raiola A., Errico A., Petruk G., Monti D.M., Barone A., Rigano M.M. Bioactive compounds in Brassicaceae vegetables with a role in the prevention of chronic diseases. Molecules. 2018;23:15. doi: 10.3390/molecules23010015. PubMed DOI PMC
Del Carmen Martínez-Ballesta M., Moreno D.M., Carvajal M. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int. J. Mol. Sci. 2013;14:11607–11625. doi: 10.3390/ijms140611607. PubMed DOI PMC
Bose J., Rodrigo-Moreno A., Shabala S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 2014;65:1241–1257. doi: 10.1093/jxb/ert430. PubMed DOI
Ksouri R., Megdiche W., Debez A., Falleh H., Grignon C., Abdelly C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol. Biochem. 2007;45:244–249. doi: 10.1016/j.plaphy.2007.02.001. PubMed DOI
Goleniowski M., Bonfill M., Cusido R., Palazón J. Phenolic acids. In: Ramawat K.G., Mérillon J.M., editors. Natural Products. Springer; Berlin, Germany: 2013.
Miura K., Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci. 2014;5:4. doi: 10.3389/fpls.2014.00004. PubMed DOI PMC
Kaur H., Bhardwaj R.D., Grewal S.K. Mitigation of salinity-induced oxidative damage in wheat (Triticum aestivum L.) seedlings by exogenous application of phenolic acids. Acta Physiol. Plant. 2017;39:221–236. doi: 10.1007/s11738-017-2521-7. DOI
Minh L.T., Khang D.T., Ha P.T.T., Tuyen P.T., Minh T.N., Quan N.V., Xuan T.D. Effects of salinity stress on growth and phenolics of rice (Oryza sativa L.) Int. Lett. Nat. Sci. 2016;57:1–10. doi: 10.18052/www.scipress.com/ILNS.57.1. DOI
Yan K., Zhao S., Bian L., Chen X. Saline stress enhanced accumulation of leaf phenolics in honeysuckle (Lonicera japonica Thunb.) without induction of oxidative stress. Plant Physiol. Biochem. 2017;112:326–334. doi: 10.1016/j.plaphy.2017.01.020. PubMed DOI
Martinez V., Mestre T.C., Rubio F., Girones-Vilaplana A., Moreno D.A., Mittler R., Rivero R.M. Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Front. Plant Sci. 2016;7:838. doi: 10.3389/fpls.2016.00838. PubMed DOI PMC
Pavlović I., Mlinarić S., Tarkowská D., Oklestkova J., Novák O., Lepeduš H., Vujčić Bok V., Radić Brkanac S., Strnad M., Salopek-Sondi B. Early Brassica crops responses to salinity stress: A comparative analysis between Chinese cabbage, white cabbage and kale. Front. Plant Sci. 2019;10:450. doi: 10.3389/fpls.2019.00450. PubMed DOI PMC
Pavlović I., Pěnčík A., Novák O., Vujčić V., Radić Brkanac S., Lepeduš H., Strnad M., Salopek-Sondi B. Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism. Plant Physiol. Biochem. 2018;125:74–84. doi: 10.1016/j.plaphy.2018.01.026. PubMed DOI
Liang W., Ma X., Wan P., Liu L. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 2018;495:286–291. doi: 10.1016/j.bbrc.2017.11.043. PubMed DOI
Ashraf M., McNeilly T. Salinity tolerance in Brassica oilseeds. Crit. Rev. Plant. Sci. 2004;23:157–174. doi: 10.1080/07352680490433286. DOI
Munns R., James R.A., Gilliham M., Flowers T.J., Colmer T.D. Tissue tolerance: An essential but elusive trait for salt-tolerant crops. Funct. Plant Biol. 2016;43:1103–1113. doi: 10.1071/FP16187. PubMed DOI
Kishor P.B.K., Sreenivasulu N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ. 2014;37:300–311. doi: 10.1111/pce.12157. PubMed DOI
Zaghdoud C., Carvajal M., Moreno D.A., Ferchichia A., Martínez-Ballesta M., Del C. Health-promoting compounds of broccoli (Brassica oleracea L. var Italica) plants as affected by nitrogen fertilisation in projected future climatic change environments. J. Sci. Food Agric. 2016;96:392–403. doi: 10.1002/jsfa.7102. PubMed DOI
Yang C.-W., Zhang M.-L., Liu J., Shi D.-C., Wang D.-L. Effects of buffer capacity on growth, photosynthesis, and solute accumulation of a glycophyte (wheat) and a halophyte (Chloris virgata) Photosynthetica. 2009;47:55–60. doi: 10.1007/s11099-009-0010-y. DOI
López-Berenguer C., Martínez-Ballesta M.C., García-Viguera C., Carvajal M. Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Sci. 2008;174:321–328. doi: 10.1016/j.plantsci.2007.11.012. DOI
Yuan G., Wang X., Guo R., Wang Q. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem. 2010;121:1014–1019. doi: 10.1016/j.foodchem.2010.01.040. DOI
Aghajanzadeh T.A., Reich M., Kopriva S., De Kok L.J. Impact of chloride (NaCl, KCl) and sulphate (Na2SO4, K2SO4) salinity on glucosinolate metabolism in Brassica rapa. J. Agro. Crop Sci. 2017;204:137–146. doi: 10.1111/jac.12243. DOI
Ksouri R., Ksouri W.M., Jallali I., Debez A., Magné C., Hiroko I., Abdelly C. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 2012;32:289–326. doi: 10.3109/07388551.2011.630647. PubMed DOI
Ksouri R., Smaoui A., Isoda H., Abdelly C. Utilization of halophyte species as new sources of bioactive substances. J. Arid Land Stud. 2012;22:41–44.
Cirillo G., Parisi O.I., Restuccia D., Puoci F., Picci N. Antioxidant activity of phenolic acids: Correlation with chemical structure and in vitro assays for their analytical determination. In: Munné-Bosch S., editor. Phenolic Acids: Composition, Applications and Health Benefits. Nova Science Publishers Inc.; New York, NY, USA: 2012. pp. 1–33.
Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J. Environ. Stud. 2006;15:523–530.
Cvetković B.R., Pezo L.L., Mišan A., Mastilović J., Kevrešan Ž., Ilić N., Filipčev B. The effects of osmotic dehydration of white cabbage on polyphenols and mineral content. LWT. 2019 doi: 10.1016/j.lwt.2019.05.001. in press. DOI
Nouraei S., Rahimmalek M., Saeidi G. Variation in polyphenolic composition, antioxidants and physiological characteristics of globe artichoke (Cynara cardunculus var. scolymus Hayek L.) as affected by drought stress. Sci. Hort. 2018;233:378–385. doi: 10.1016/j.scienta.2017.12.060. DOI
Ayaz F.A., Hayırlıoglu-Ayaz S., Alpay-Karaoglu S., Grúz J., Valentová K., Ulrichová J., Strnad M. Phenolic acid contents of kale (Brassica oleraceae L. var. acephala DC.) extracts and their antioxidant and antibacterial activities. Food Chem. 2008;107:19–25. doi: 10.1016/j.foodchem.2007.07.003. DOI
Bhinu V.-S., Ulrike A., Schäfer U.A., Li R., Huang J., Hannoufa A. Targeted modulation of sinapine biosynthesis pathway for seed quality improvement in Brassica napus. Transgenic Res. 2009;18:31–44. doi: 10.1007/s11248-008-9194-3. PubMed DOI
Oszmiański J., Kolniak-Ostek J., Wojdyło A. Application of ultra performance liquid chromatography photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS) method for the characterization of phenolic compounds of Lepidium sativum L. sprouts. Eur. Food Res. Technol. 2013;236:699–706.
Gupta P., De B. Differential responses of cell wall bound phenolic compounds in sensitive and tolerant varieties of rice in response to salinity. Plant Signal. Behav. 2017;10:e1379643. doi: 10.1080/15592324.2017.1379643. PubMed DOI PMC
Sabra A., Adam L., Daayf F., Renault S. Salinity-induced changes in caffeic acid derivatives, alkamides and ketones in three Echinacea species. Environ. Exp. Bot. 2012;77:234–241. doi: 10.1016/j.envexpbot.2011.11.013. DOI
Piazzon A., Vrhovsek U., Masuero D., Mattivi F., Mandoj F., Nardini M. Antioxidant activity of phenolic acids and their metabolites: synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid. J. Agric. Food Chem. 2012;60:12312–12323. doi: 10.1021/jf304076z. PubMed DOI
Razzaghi-As N., Garrido J., Khazraei H., Borges F., Firuzi O. Antioxidant properties of hydroxycinnamic acids: A review of structure-activity relationships. Curr. Med. Chem. 2013;20:4436–4450. doi: 10.2174/09298673113209990141. PubMed DOI
Nićiforović N., Abramovič H. Sinapic acid and its derivatives: Natural sources and bioactivity. Compr. Rev. Food Sci. Food Saf. 2014;13:34–51. doi: 10.1111/1541-4337.12041. PubMed DOI
Hasanuzzaman M., Nahar K., Bhuiyan T.F., Anee T.I., Inafuku M., Oku H., Fujita M. Salicylic acid: An all-rounder in regulating abiotic stress responses in plants. In: El-Esawi M., editor. Phytohormones—Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses. IntechOpen; London, UK: 2017. pp. 31–75.
Jayakannan M., Bose J., Babourina O., Rengel Z., Shabala S. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul. 2015;76:25–40. doi: 10.1007/s10725-015-0028-z. DOI
Fiket Ž., Mikac N., Kniewald G. Mass fractions of forty-six major and trace elements, including rare earth elements, in sediment and soil reference materials used in environmental studies. Geostand. Geoanal. Res. 2016;41:123–135. doi: 10.1111/ggr.12129. DOI
Carillo P., Gibon Z., PrometheusWiki Contributors Extraction and Determination of Proline. [(accessed on 31 May 2011)]; Available online: http://tiki-pagehistory.php?page=Extraction and determination of proline&preview=14.
Radić Brkanac S., Gerić M., Gajski G., Vujčić V., Garaj-Vrhovac V., Kremer D., Domijan A.-M. Toxicity and antioxidant capacity of Frangula alnus Mill. Bark and its active component emodin. Regul. Toxicol. Pharmacol. 2015;73:923–929. doi: 10.1016/j.yrtph.2015.09.025. PubMed DOI
Lichtenthaler H.K., Buschmann C. Current Protocols in Food Analytical Chemistry. John Wiley & Sons Inc.; Hoboken, NJ, USA: 2001. Chlorophylls and carotenoids: measurement and characterization by UV–VIS spectroscopy.
Aghajanzadeh T.A., Hawkesford M.J., De Kok L.J. The significance of glucosinolates for sulfur storage in Brassicaceae seedlings. Front. Plant Sci. 2014;5:704. doi: 10.3389/fpls.2014.00704. PubMed DOI PMC
Singleton V.L., Rossi J.A. Colorimetry of total phenolics witphosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965;16:144–158.
European Pharmacopoeia. 4th ed. Council of Europe; Strasbourg, France: 2004. pp. 2377–2378.
Zhishen J., Mengcheng T., Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64:555–559. doi: 10.1016/S0308-8146(98)00102-2. DOI
Šamec D., Bogović M., Vincek D., Martinčić J., Salopek-Sondi B. Assessing the authenticity of the white cabbage (Brassica oleracea var. capitata f. alba) cv. ‘Varaždinski’ by molecular and phytochemical markers. Food Res. Int. 2014;60:266–272.
Gruz J., Ayaz F.A., Torun H., Strnad M. Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chem. 2011;124:271–277. doi: 10.1016/j.foodchem.2010.06.030. DOI
Gruz J., Novák O., Strnad M. Rapid analysis of phenolic acids in beverages by UPLC–MS/MS. Food Chem. 2008;111:789–794. doi: 10.1016/j.foodchem.2008.05.014. DOI