Involvement of Phenolic Acids in Short-Term Adaptation to Salinity Stress is Species-Specific among Brassicaceae

. 2019 Jun 06 ; 8 (6) : . [epub] 20190606

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31174414

Grantová podpora
IP-2014-09-4359 Hrvatska Zaklada za Znanost
18-07563S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000738 European Regional Development Fund

Salinity is a major abiotic stress negatively affecting plant growth and consequently crop production. The effects of short-term salt stress were evaluated on seedlings of three globally important Brassica crops-Chinese cabbage (Brassica rapa ssp. pekinensis), white cabbage (Brassica oleracea var. capitata), and kale (Brassica oleracea var. acephala)-with particular focus on phenolic acids. The physiological and biochemical stress parameters in the seedlings and the levels of three main groups of metabolites (total glucosinolates, carotenoids, and phenolics) and individual phenolic acids were determined. The salt treatments caused a dose-dependent reduction in root growth and biomass and an increase in stress parameters (Na+/K+ ratio, reactive oxygen species (ROS) and glutathione (GSH)) in all seedlings but most prominently in Chinese cabbage. Based on PCA, specific metabolites grouped close to the more tolerant species, white cabbage and kale. The highest levels of phenolic acids, particularly hydroxycinnamic acids, were determined in the more tolerant kale and white cabbage. A reduction in caffeic, salicylic, and 4-coumaric acid was found in Chinese cabbage and kale, and an increase in ferulic acid levels was found in kale upon salinity treatments. Phenolic acids are species-specific among Brassicaceae, and some may participate in stress tolerance. Salt-tolerant varieties have higher levels of some phenolic acids and suffer less from metabolic stress disorders under salinity stress.

Zobrazit více v PubMed

Zhang X., Lu G., Long W., Zou Y., Li F., Nishio T. Recent progress in drought and salt tolerance studies in Brassica crops. Breed. Sci. 2014;64:60–73. doi: 10.1270/jsbbs.64.60. PubMed DOI PMC

Munns R., Gilliham M. Salinity tolerance of crops—What is the cost? New Phytol. 2015;208:668–673. doi: 10.1111/nph.13519. PubMed DOI

Daliakopoulos I.N., Panagea I.S., Tsanis I.K., Grillakis M.G., Koutroulis A.G., Hessel R., Mayor A.G., Ritsema C.J. Yield response of Mediteranean rangelands under a changing climate. Land Degrad. Dev. 2017;28:1962–1972. doi: 10.1002/ldr.2717. DOI

Iqbal N., Umar S., Khan N.A. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea) J. Plant Physiol. 2015;178:84–91. doi: 10.1016/j.jplph.2015.02.006. PubMed DOI

Velasco P., Francisco M., Moreno D.A., Ferreres F., García-Viguera C., Cartea M.E. Phytochemical fingerprinting of vegetable Brassica oleracea and Brassica napus by simultaneous identification of glucosinolates and phenolics. Phytochem. Anal. 2011;22:144–152. doi: 10.1002/pca.1259. PubMed DOI

Šamec D., Pavlović I., Salopek-Sondi B. White cabbage (Brassica oleracea var. capitata f. alba): Botanical, phytochemical and pharmacologicall overwiev. Phytochem. Rev. 2017;16:117–135.

Šamec D., Pavlović I., Radojčić Redovniković I., Salopek-Sondi B. Comparative analysis of phytochemicals and activity of endogenous enzymes associated with their stability, bioavailability and food quality in five Brassicaceae sprouts. Food Chem. 2018;269:96–102. doi: 10.1016/j.foodchem.2018.06.133. PubMed DOI

Šamec D., Urlić B., Salopek-Sondi B. Kale (Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement. Crit. Rev. Food Sci. Nutr. 2018 in press. PubMed

Xiao Z., Rausch S., Luo Y., Sun J., Yu L., Wang Q., Chen P., Yu L., Stommel J.R. Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. LWT Food Sci. Technol. 2019;101:731–737. doi: 10.1016/j.lwt.2018.10.076. DOI

Cartea M.E., Velasco P. Glucosinolates in Brassica foods: Bioavailability in food and significance for human health. Phytochem. Rev. 2008;7:213–229. doi: 10.1007/s11101-007-9072-2. DOI

Cartea M.E., Francisco M., Soengas P., Velasco P. Phenolic compounds in Brassica vegetables. Molecules. 2011;16:251–280. doi: 10.3390/molecules16010251. PubMed DOI PMC

Raiola A., Errico A., Petruk G., Monti D.M., Barone A., Rigano M.M. Bioactive compounds in Brassicaceae vegetables with a role in the prevention of chronic diseases. Molecules. 2018;23:15. doi: 10.3390/molecules23010015. PubMed DOI PMC

Del Carmen Martínez-Ballesta M., Moreno D.M., Carvajal M. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int. J. Mol. Sci. 2013;14:11607–11625. doi: 10.3390/ijms140611607. PubMed DOI PMC

Bose J., Rodrigo-Moreno A., Shabala S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 2014;65:1241–1257. doi: 10.1093/jxb/ert430. PubMed DOI

Ksouri R., Megdiche W., Debez A., Falleh H., Grignon C., Abdelly C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol. Biochem. 2007;45:244–249. doi: 10.1016/j.plaphy.2007.02.001. PubMed DOI

Goleniowski M., Bonfill M., Cusido R., Palazón J. Phenolic acids. In: Ramawat K.G., Mérillon J.M., editors. Natural Products. Springer; Berlin, Germany: 2013.

Miura K., Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Front. Plant Sci. 2014;5:4. doi: 10.3389/fpls.2014.00004. PubMed DOI PMC

Kaur H., Bhardwaj R.D., Grewal S.K. Mitigation of salinity-induced oxidative damage in wheat (Triticum aestivum L.) seedlings by exogenous application of phenolic acids. Acta Physiol. Plant. 2017;39:221–236. doi: 10.1007/s11738-017-2521-7. DOI

Minh L.T., Khang D.T., Ha P.T.T., Tuyen P.T., Minh T.N., Quan N.V., Xuan T.D. Effects of salinity stress on growth and phenolics of rice (Oryza sativa L.) Int. Lett. Nat. Sci. 2016;57:1–10. doi: 10.18052/www.scipress.com/ILNS.57.1. DOI

Yan K., Zhao S., Bian L., Chen X. Saline stress enhanced accumulation of leaf phenolics in honeysuckle (Lonicera japonica Thunb.) without induction of oxidative stress. Plant Physiol. Biochem. 2017;112:326–334. doi: 10.1016/j.plaphy.2017.01.020. PubMed DOI

Martinez V., Mestre T.C., Rubio F., Girones-Vilaplana A., Moreno D.A., Mittler R., Rivero R.M. Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Front. Plant Sci. 2016;7:838. doi: 10.3389/fpls.2016.00838. PubMed DOI PMC

Pavlović I., Mlinarić S., Tarkowská D., Oklestkova J., Novák O., Lepeduš H., Vujčić Bok V., Radić Brkanac S., Strnad M., Salopek-Sondi B. Early Brassica crops responses to salinity stress: A comparative analysis between Chinese cabbage, white cabbage and kale. Front. Plant Sci. 2019;10:450. doi: 10.3389/fpls.2019.00450. PubMed DOI PMC

Pavlović I., Pěnčík A., Novák O., Vujčić V., Radić Brkanac S., Lepeduš H., Strnad M., Salopek-Sondi B. Short-term salt stress in Brassica rapa seedlings causes alterations in auxin metabolism. Plant Physiol. Biochem. 2018;125:74–84. doi: 10.1016/j.plaphy.2018.01.026. PubMed DOI

Liang W., Ma X., Wan P., Liu L. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 2018;495:286–291. doi: 10.1016/j.bbrc.2017.11.043. PubMed DOI

Ashraf M., McNeilly T. Salinity tolerance in Brassica oilseeds. Crit. Rev. Plant. Sci. 2004;23:157–174. doi: 10.1080/07352680490433286. DOI

Munns R., James R.A., Gilliham M., Flowers T.J., Colmer T.D. Tissue tolerance: An essential but elusive trait for salt-tolerant crops. Funct. Plant Biol. 2016;43:1103–1113. doi: 10.1071/FP16187. PubMed DOI

Kishor P.B.K., Sreenivasulu N. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ. 2014;37:300–311. doi: 10.1111/pce.12157. PubMed DOI

Zaghdoud C., Carvajal M., Moreno D.A., Ferchichia A., Martínez-Ballesta M., Del C. Health-promoting compounds of broccoli (Brassica oleracea L. var Italica) plants as affected by nitrogen fertilisation in projected future climatic change environments. J. Sci. Food Agric. 2016;96:392–403. doi: 10.1002/jsfa.7102. PubMed DOI

Yang C.-W., Zhang M.-L., Liu J., Shi D.-C., Wang D.-L. Effects of buffer capacity on growth, photosynthesis, and solute accumulation of a glycophyte (wheat) and a halophyte (Chloris virgata) Photosynthetica. 2009;47:55–60. doi: 10.1007/s11099-009-0010-y. DOI

López-Berenguer C., Martínez-Ballesta M.C., García-Viguera C., Carvajal M. Leaf water balance mediated by aquaporins under salt stress and associated glucosinolate synthesis in broccoli. Plant Sci. 2008;174:321–328. doi: 10.1016/j.plantsci.2007.11.012. DOI

Yuan G., Wang X., Guo R., Wang Q. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem. 2010;121:1014–1019. doi: 10.1016/j.foodchem.2010.01.040. DOI

Aghajanzadeh T.A., Reich M., Kopriva S., De Kok L.J. Impact of chloride (NaCl, KCl) and sulphate (Na2SO4, K2SO4) salinity on glucosinolate metabolism in Brassica rapa. J. Agro. Crop Sci. 2017;204:137–146. doi: 10.1111/jac.12243. DOI

Ksouri R., Ksouri W.M., Jallali I., Debez A., Magné C., Hiroko I., Abdelly C. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 2012;32:289–326. doi: 10.3109/07388551.2011.630647. PubMed DOI

Ksouri R., Smaoui A., Isoda H., Abdelly C. Utilization of halophyte species as new sources of bioactive substances. J. Arid Land Stud. 2012;22:41–44.

Cirillo G., Parisi O.I., Restuccia D., Puoci F., Picci N. Antioxidant activity of phenolic acids: Correlation with chemical structure and in vitro assays for their analytical determination. In: Munné-Bosch S., editor. Phenolic Acids: Composition, Applications and Health Benefits. Nova Science Publishers Inc.; New York, NY, USA: 2012. pp. 1–33.

Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J. Environ. Stud. 2006;15:523–530.

Cvetković B.R., Pezo L.L., Mišan A., Mastilović J., Kevrešan Ž., Ilić N., Filipčev B. The effects of osmotic dehydration of white cabbage on polyphenols and mineral content. LWT. 2019 doi: 10.1016/j.lwt.2019.05.001. in press. DOI

Nouraei S., Rahimmalek M., Saeidi G. Variation in polyphenolic composition, antioxidants and physiological characteristics of globe artichoke (Cynara cardunculus var. scolymus Hayek L.) as affected by drought stress. Sci. Hort. 2018;233:378–385. doi: 10.1016/j.scienta.2017.12.060. DOI

Ayaz F.A., Hayırlıoglu-Ayaz S., Alpay-Karaoglu S., Grúz J., Valentová K., Ulrichová J., Strnad M. Phenolic acid contents of kale (Brassica oleraceae L. var. acephala DC.) extracts and their antioxidant and antibacterial activities. Food Chem. 2008;107:19–25. doi: 10.1016/j.foodchem.2007.07.003. DOI

Bhinu V.-S., Ulrike A., Schäfer U.A., Li R., Huang J., Hannoufa A. Targeted modulation of sinapine biosynthesis pathway for seed quality improvement in Brassica napus. Transgenic Res. 2009;18:31–44. doi: 10.1007/s11248-008-9194-3. PubMed DOI

Oszmiański J., Kolniak-Ostek J., Wojdyło A. Application of ultra performance liquid chromatography photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS) method for the characterization of phenolic compounds of Lepidium sativum L. sprouts. Eur. Food Res. Technol. 2013;236:699–706.

Gupta P., De B. Differential responses of cell wall bound phenolic compounds in sensitive and tolerant varieties of rice in response to salinity. Plant Signal. Behav. 2017;10:e1379643. doi: 10.1080/15592324.2017.1379643. PubMed DOI PMC

Sabra A., Adam L., Daayf F., Renault S. Salinity-induced changes in caffeic acid derivatives, alkamides and ketones in three Echinacea species. Environ. Exp. Bot. 2012;77:234–241. doi: 10.1016/j.envexpbot.2011.11.013. DOI

Piazzon A., Vrhovsek U., Masuero D., Mattivi F., Mandoj F., Nardini M. Antioxidant activity of phenolic acids and their metabolites: synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid. J. Agric. Food Chem. 2012;60:12312–12323. doi: 10.1021/jf304076z. PubMed DOI

Razzaghi-As N., Garrido J., Khazraei H., Borges F., Firuzi O. Antioxidant properties of hydroxycinnamic acids: A review of structure-activity relationships. Curr. Med. Chem. 2013;20:4436–4450. doi: 10.2174/09298673113209990141. PubMed DOI

Nićiforović N., Abramovič H. Sinapic acid and its derivatives: Natural sources and bioactivity. Compr. Rev. Food Sci. Food Saf. 2014;13:34–51. doi: 10.1111/1541-4337.12041. PubMed DOI

Hasanuzzaman M., Nahar K., Bhuiyan T.F., Anee T.I., Inafuku M., Oku H., Fujita M. Salicylic acid: An all-rounder in regulating abiotic stress responses in plants. In: El-Esawi M., editor. Phytohormones—Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses. IntechOpen; London, UK: 2017. pp. 31–75.

Jayakannan M., Bose J., Babourina O., Rengel Z., Shabala S. Salicylic acid in plant salinity stress signalling and tolerance. Plant Growth Regul. 2015;76:25–40. doi: 10.1007/s10725-015-0028-z. DOI

Fiket Ž., Mikac N., Kniewald G. Mass fractions of forty-six major and trace elements, including rare earth elements, in sediment and soil reference materials used in environmental studies. Geostand. Geoanal. Res. 2016;41:123–135. doi: 10.1111/ggr.12129. DOI

Carillo P., Gibon Z., PrometheusWiki Contributors Extraction and Determination of Proline. [(accessed on 31 May 2011)]; Available online: http://tiki-pagehistory.php?page=Extraction and determination of proline&preview=14.

Radić Brkanac S., Gerić M., Gajski G., Vujčić V., Garaj-Vrhovac V., Kremer D., Domijan A.-M. Toxicity and antioxidant capacity of Frangula alnus Mill. Bark and its active component emodin. Regul. Toxicol. Pharmacol. 2015;73:923–929. doi: 10.1016/j.yrtph.2015.09.025. PubMed DOI

Lichtenthaler H.K., Buschmann C. Current Protocols in Food Analytical Chemistry. John Wiley & Sons Inc.; Hoboken, NJ, USA: 2001. Chlorophylls and carotenoids: measurement and characterization by UV–VIS spectroscopy.

Aghajanzadeh T.A., Hawkesford M.J., De Kok L.J. The significance of glucosinolates for sulfur storage in Brassicaceae seedlings. Front. Plant Sci. 2014;5:704. doi: 10.3389/fpls.2014.00704. PubMed DOI PMC

Singleton V.L., Rossi J.A. Colorimetry of total phenolics witphosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965;16:144–158.

European Pharmacopoeia. 4th ed. Council of Europe; Strasbourg, France: 2004. pp. 2377–2378.

Zhishen J., Mengcheng T., Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64:555–559. doi: 10.1016/S0308-8146(98)00102-2. DOI

Šamec D., Bogović M., Vincek D., Martinčić J., Salopek-Sondi B. Assessing the authenticity of the white cabbage (Brassica oleracea var. capitata f. alba) cv. ‘Varaždinski’ by molecular and phytochemical markers. Food Res. Int. 2014;60:266–272.

Gruz J., Ayaz F.A., Torun H., Strnad M. Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chem. 2011;124:271–277. doi: 10.1016/j.foodchem.2010.06.030. DOI

Gruz J., Novák O., Strnad M. Rapid analysis of phenolic acids in beverages by UPLC–MS/MS. Food Chem. 2008;111:789–794. doi: 10.1016/j.foodchem.2008.05.014. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...