Epithelial-Mesenchymal Transition Promotes the Differentiation Potential of Xenopus tropicalis Immature Sertoli Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31191685
PubMed Central
PMC6525813
DOI
10.1155/2019/8387478
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development by which sessile epithelial cells are converted into migratory mesenchymal cells. Our laboratory has been successful in the establishment of Xenopus tropicalis immature Sertoli cells (XtiSCs) with the restricted differentiation potential. The aim of this study is the determination of factors responsible for EMT activation in XtiSCs and stemness window acquisition where cells possess the broadest differentiation potential. For this purpose, we tested three potent EMT inducers-GSK-3 inhibitor (CHIR99021), FGF2, and/or TGF-β1 ligand. XtiSCs underwent full EMT after 3-day treatment with CHIR99021 and partial EMT with FGF2 but not with TGF-β1. The morphological change of CHIR-treated XtiSCs to the typical spindle-like cell shape was associated with the upregulation of mesenchymal markers and the downregulation of epithelial markers. Moreover, only CHIR-treated XtiSCs were able to differentiate into chondrocytes in vitro and cardiomyocytes in vivo. Interestingly, EMT-shifted cells could migrate towards cancer cells (HeLa) in vitro and to the injury site in vivo. The results provide a better understanding of signaling pathways underlying the generation of testis-derived stem cells.
Zobrazit více v PubMed
Thiery J. P., Acloque H., Huang R. Y. J., Nieto M. A. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–890. doi: 10.1016/j.cell.2009.11.007. PubMed DOI
Kalluri R., Weinberg R. A. The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation. 2009;119(6):1420–1428. doi: 10.1172/JCI39104. PubMed DOI PMC
Lamouille S., Xu J., Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology. 2014;15(3):178–196. doi: 10.1038/nrm3758. PubMed DOI PMC
Nakaya Y., Kuroda S., Katagiri Y. T., Kaibuchi K., Takahashi Y. Mesenchymal-epithelial transition during somitic segmentation is regulated by differential roles of Cdc42 and Rac1. Developmental Cell. 2004;7(3):425–438. doi: 10.1016/j.devcel.2004.08.003. PubMed DOI
Plisov S. Y., Ivanov S. V., Yoshino K., et al. Mesenchymal-epithelial transition in the developing metanephric kidney: gene expression study by differential display. Genesis. 2000;27(1):22–31. doi: 10.1002/1526-968X(200005)27:1<22::AID-GENE40>3.0.CO;2-V. PubMed DOI
Li B., Zheng Y.-W., Sano Y., Taniguchi H. Evidence for mesenchymal−epithelial transition associated with mouse hepatic stem cell differentiation. PLoS One. 2011;6(2, article e17092) doi: 10.1371/journal.pone.0017092. PubMed DOI PMC
Mani S. A., Guo W., Liao M.-J., et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–715. doi: 10.1016/j.cell.2008.03.027. PubMed DOI PMC
Battula V. L., Evans K. W., Hollier B. G., et al. Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells. 2010;28(8):1435–1445. doi: 10.1002/stem.467. PubMed DOI PMC
Barrionuevo F., Burgos M., Jiménez R. Origin and function of embryonic Sertoli cells. BioMolecular Concepts. 2011;2(6):537–547. doi: 10.1515/BMC.2011.044. PubMed DOI
Albrecht K. H., Eicher E. M. Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Developmental Biology. 2001;240(1):92–107. doi: 10.1006/dbio.2001.0438. PubMed DOI
Sekido R., Bar I., Narváez V., Penny G., Lovell-Badge R. SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Developmental Biology. 2004;274(2):271–279. doi: 10.1016/j.ydbio.2004.07.011. PubMed DOI
Schmahl J., Eicher E. M., Washburn L. L., Capel B. Sry induces cell proliferation in the mouse gonad. Development. 2000;127(1):65–73. PubMed
Sekido R., Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature. 2008;456(7223):824–824. doi: 10.1038/nature07622. PubMed DOI
Karl J., Capel B. Sertoli cells of the mouse testis originate from the coelomic epithelium. Developmental Biology. 1998;203(2):323–333. doi: 10.1006/dbio.1998.9068. PubMed DOI
Tlapakova T., Nguyen T. M. X., Vegrichtova M., et al. Identification and characterization of Xenopus tropicalis common progenitors of Sertoli and peritubular myoid cell lineages. Biology Open. 2016;5(9):1275–1282. doi: 10.1242/bio.019265. PubMed DOI PMC
Hemendinger R. A., Gores P., Blacksten L., Harley V., Halberstadt C. Identification of a specific Sertoli cell marker, Sox9, for use in transplantation. Cell Transplantation. 2002;11(6):499–505. doi: 10.3727/000000002783985567. PubMed DOI
Paranko J., Kallajoki M., Pelliniemi L. J., Lehto V. P., Virtanen I. Transient coexpression of cytokeratin and vimentin in differentiating rat Sertoli cells. Developmental Biology. 1986;117(1):35–44. doi: 10.1016/0012-1606(86)90345-3. PubMed DOI
Rogatsch H., Hittmair A., Mikuz G., Feichtinger H., Jezek D. Expression of vimentin, cytokeratin, and desmin in Sertoli cells of human fetal, cryptorchid, and tumour-adjacent testicular tissue. Virchows Archiv. 1996;427(5) doi: 10.1007/bf00199510. PubMed DOI
Ciruna B., Rossant J. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Developmental Cell. 2001;1(1):37–49. doi: 10.1016/S1534-5807(01)00017-X. PubMed DOI
Zhou B. P., Deng J., Xia W., et al. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biology. 2004;6(10):931–940. doi: 10.1038/ncb1173. PubMed DOI
Vincent T., Neve E. P. A., Johnson J. R., et al. A SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial–mesenchymal transition. Nature Cell Biology. 2009;11(8):943–950. doi: 10.1038/ncb1905. PubMed DOI PMC
Greco K. V., Iqbal A. J., Rattazzi L., et al. High density micromass cultures of a human chondrocyte cell line: a reliable assay system to reveal the modulatory functions of pharmacological agents. Biochemical Pharmacology. 2011;82(12):1919–1929. doi: 10.1016/j.bcp.2011.09.009. PubMed DOI PMC
Geach T. J., Zimmerman L. B. Developmental genetics in Xenopus tropicalis . Methods in Molecular Biology. 2011;770:77–117. doi: 10.1007/978-1-61779-210-6_4. PubMed DOI
Paredes R., Ishibashi S., Borrill R., Robert J., Amaya E. Xenopus: an in vivo model for imaging the inflammatory response following injury and bacterial infection. Developmental Biology. 2015;408(2):213–228. doi: 10.1016/j.ydbio.2015.03.008. PubMed DOI PMC
Stosiek P., Kasper M., Karsten U. Expression of cytokeratins 8 and 18 in human Sertoli cells of immature and atrophic seminiferous tubules. Differentiation. 1990;43(1):66–70. doi: 10.1111/j.1432-0436.1990.tb00431.x. PubMed DOI
Appert A., Fridmacher V., Locquet O., Magre S. Patterns of keratins 8, 18 and 19 during gonadal differentiation in the mouse: sex- and time-dependent expression of keratin 19. Differentiation. 1998;63(5):273–284. doi: 10.1046/j.1432-0436.1998.6350273.x. PubMed DOI
Xiong H., Hong J., du W., et al. Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial-mesenchymal transition. Journal of Biological Chemistry. 2012;287(8):5819–5832. doi: 10.1074/jbc.M111.295964. PubMed DOI PMC
Lee J., Kim J. C. K., Lee S.-E., et al. Signal transducer and activator of transcription 3 (STAT3) protein suppresses adenoma-to-carcinoma transition in Apc min/+ mice via regulation of Snail-1 (SNAI) protein stability. Journal of Biological Chemistry. 2012;287(22):18182–18189. doi: 10.1074/jbc.M111.328831. PubMed DOI PMC
Beurel E., Jope R. S. Differential regulation of STAT family members by glycogen synthase kinase-3. Journal of Biological Chemistry. 2008;283(32):21934–21944. doi: 10.1074/jbc.M802481200. PubMed DOI PMC
Câmara J., Jarai G. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-α . Fibrogenesis & Tissue Repair. 2010;3(1) doi: 10.1186/1755-1536-3-2. PubMed DOI PMC
Przygodzka P., Papiewska-Pajak I., Bogusz H., et al. Neuromedin U is upregulated by Snail at early stages of EMT in HT29 colon cancer cells. Biochimica et Biophysica Acta (BBA) - General Subjects. 2016;1860(11):2445–2453. doi: 10.1016/j.bbagen.2016.07.012. PubMed DOI
Jolly M. K., Huang B., Lu M., Mani S. A., Levine H., Ben-Jacob E. Towards elucidating the connection between epithelial–mesenchymal transitions and stemness. Journal of The Royal Society Interface. 2014;11(101, article 20140962) doi: 10.1098/rsif.2014.0962. PubMed DOI PMC
Brabletz S., Bajdak K., Meidhof S., et al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. The EMBO Journal. 2011;30(4):770–782. doi: 10.1038/emboj.2010.349. PubMed DOI PMC
Zhou C., Jiang H., Zhang Z., et al. ZEB1 confers stem cell-like properties in breast cancer by targeting neurogenin-3. Oncotarget. 2017;8(33):54388–54401. doi: 10.18632/oncotarget.17077. PubMed DOI PMC
Lustig L., Casanova M. B., Vianello S. E., Denduchis B., Meroni S., Cigorraga S. Immunodetection of cell adhesion molecules in rat Sertoli cell cultures. American Journal of Reproductive Immunology. 1998;39(6):399–405. doi: 10.1111/j.1600-0897.1998.tb00377.x. PubMed DOI
Veevers-Lowe J., Ball S. G., Shuttleworth A., Kielty C. M. Mesenchymal stem cell migration is regulated by fibronectin through α5β1-integrin-mediated activation of PDGFR-β and potentiation of growth factor signals. Journal of Cell Science. 2011;124(8):1288–1300. doi: 10.1242/jcs.076935. PubMed DOI PMC
Brown K. A., Aakre M. E., Gorska A. E., et al. Induction by transforming growth factor-β1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Research. 2004;6(3):R215–R231. doi: 10.1186/bcr778. PubMed DOI PMC
Shimabukuro Y., Terashima H., Takedachi M., et al. Fibroblast growth factor-2 stimulates directed migration of periodontal ligament cells via PI3K/AKT signaling and CD44/hyaluronan interaction. Journal of Cellular Physiology. 2011;226(3):809–821. doi: 10.1002/jcp.22406. PubMed DOI
Baljinnyam E., Umemura M., Chuang C., et al. Epac1 increases migration of endothelial cells and melanoma cells via FGF2-mediated paracrine signaling. Pigment Cell & Melanoma Research. 2014;27(4):611–620. doi: 10.1111/pcmr.12250. PubMed DOI PMC
Ben Amar M., Wu M. Re-epithelialization: advancing epithelium frontier during wound healing. Journal of The Royal Society Interface. 2014;11(93, article 20131038) doi: 10.1098/rsif.2013.1038. PubMed DOI PMC
Yan C., Grimm W. A., Garner W. L., et al. Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-α through bone morphogenic protein-2. The American Journal of Pathology. 2010;176(5):2247–2258. doi: 10.2353/ajpath.2010.090048. PubMed DOI PMC
Kwon Y. W., Heo S. C., Jeong G. O., et al. Tumor necrosis factor-α-activated mesenchymal stem cells promote endothelial progenitor cell homing and angiogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2013;1832(12):2136–2144. doi: 10.1016/j.bbadis.2013.08.002. PubMed DOI
Chen H., Min X.-H., Wang Q.-Y., et al. Pre-activation of mesenchymal stem cells with TNF-α, IL-1β and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury. Scientific Reports. 2015;5(1):p. 8718. doi: 10.1038/srep08718. PubMed DOI PMC
Egea V., von Baumgarten L., Schichor C., et al. TNF-α respecifies human mesenchymal stem cells to a neural fate and promotes migration toward experimental glioma. Cell Death and Differentiation. 2011;18(5):853–863. doi: 10.1038/cdd.2010.154. PubMed DOI PMC
Croes M., Oner F. C., Kruyt M. C., et al. Proinflammatory mediators enhance the osteogenesis of human mesenchymal stem cells after lineage commitment. PLoS One. 2015;10(7, article e0132781) doi: 10.1371/journal.pone.0132781. PubMed DOI PMC