Epithelial-Mesenchymal Transition Promotes the Differentiation Potential of Xenopus tropicalis Immature Sertoli Cells

. 2019 ; 2019 () : 8387478. [epub] 20190505

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31191685

Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development by which sessile epithelial cells are converted into migratory mesenchymal cells. Our laboratory has been successful in the establishment of Xenopus tropicalis immature Sertoli cells (XtiSCs) with the restricted differentiation potential. The aim of this study is the determination of factors responsible for EMT activation in XtiSCs and stemness window acquisition where cells possess the broadest differentiation potential. For this purpose, we tested three potent EMT inducers-GSK-3 inhibitor (CHIR99021), FGF2, and/or TGF-β1 ligand. XtiSCs underwent full EMT after 3-day treatment with CHIR99021 and partial EMT with FGF2 but not with TGF-β1. The morphological change of CHIR-treated XtiSCs to the typical spindle-like cell shape was associated with the upregulation of mesenchymal markers and the downregulation of epithelial markers. Moreover, only CHIR-treated XtiSCs were able to differentiate into chondrocytes in vitro and cardiomyocytes in vivo. Interestingly, EMT-shifted cells could migrate towards cancer cells (HeLa) in vitro and to the injury site in vivo. The results provide a better understanding of signaling pathways underlying the generation of testis-derived stem cells.

Erratum v

PubMed

Zobrazit více v PubMed

Thiery J. P., Acloque H., Huang R. Y. J., Nieto M. A. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–890. doi: 10.1016/j.cell.2009.11.007. PubMed DOI

Kalluri R., Weinberg R. A. The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation. 2009;119(6):1420–1428. doi: 10.1172/JCI39104. PubMed DOI PMC

Lamouille S., Xu J., Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology. 2014;15(3):178–196. doi: 10.1038/nrm3758. PubMed DOI PMC

Nakaya Y., Kuroda S., Katagiri Y. T., Kaibuchi K., Takahashi Y. Mesenchymal-epithelial transition during somitic segmentation is regulated by differential roles of Cdc42 and Rac1. Developmental Cell. 2004;7(3):425–438. doi: 10.1016/j.devcel.2004.08.003. PubMed DOI

Plisov S. Y., Ivanov S. V., Yoshino K., et al. Mesenchymal-epithelial transition in the developing metanephric kidney: gene expression study by differential display. Genesis. 2000;27(1):22–31. doi: 10.1002/1526-968X(200005)27:1<22::AID-GENE40>3.0.CO;2-V. PubMed DOI

Li B., Zheng Y.-W., Sano Y., Taniguchi H. Evidence for mesenchymal−epithelial transition associated with mouse hepatic stem cell differentiation. PLoS One. 2011;6(2, article e17092) doi: 10.1371/journal.pone.0017092. PubMed DOI PMC

Mani S. A., Guo W., Liao M.-J., et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–715. doi: 10.1016/j.cell.2008.03.027. PubMed DOI PMC

Battula V. L., Evans K. W., Hollier B. G., et al. Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells. 2010;28(8):1435–1445. doi: 10.1002/stem.467. PubMed DOI PMC

Barrionuevo F., Burgos M., Jiménez R. Origin and function of embryonic Sertoli cells. BioMolecular Concepts. 2011;2(6):537–547. doi: 10.1515/BMC.2011.044. PubMed DOI

Albrecht K. H., Eicher E. M. Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Developmental Biology. 2001;240(1):92–107. doi: 10.1006/dbio.2001.0438. PubMed DOI

Sekido R., Bar I., Narváez V., Penny G., Lovell-Badge R. SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Developmental Biology. 2004;274(2):271–279. doi: 10.1016/j.ydbio.2004.07.011. PubMed DOI

Schmahl J., Eicher E. M., Washburn L. L., Capel B. Sry induces cell proliferation in the mouse gonad. Development. 2000;127(1):65–73. PubMed

Sekido R., Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature. 2008;456(7223):824–824. doi: 10.1038/nature07622. PubMed DOI

Karl J., Capel B. Sertoli cells of the mouse testis originate from the coelomic epithelium. Developmental Biology. 1998;203(2):323–333. doi: 10.1006/dbio.1998.9068. PubMed DOI

Tlapakova T., Nguyen T. M. X., Vegrichtova M., et al. Identification and characterization of Xenopus tropicalis common progenitors of Sertoli and peritubular myoid cell lineages. Biology Open. 2016;5(9):1275–1282. doi: 10.1242/bio.019265. PubMed DOI PMC

Hemendinger R. A., Gores P., Blacksten L., Harley V., Halberstadt C. Identification of a specific Sertoli cell marker, Sox9, for use in transplantation. Cell Transplantation. 2002;11(6):499–505. doi: 10.3727/000000002783985567. PubMed DOI

Paranko J., Kallajoki M., Pelliniemi L. J., Lehto V. P., Virtanen I. Transient coexpression of cytokeratin and vimentin in differentiating rat Sertoli cells. Developmental Biology. 1986;117(1):35–44. doi: 10.1016/0012-1606(86)90345-3. PubMed DOI

Rogatsch H., Hittmair A., Mikuz G., Feichtinger H., Jezek D. Expression of vimentin, cytokeratin, and desmin in Sertoli cells of human fetal, cryptorchid, and tumour-adjacent testicular tissue. Virchows Archiv. 1996;427(5) doi: 10.1007/bf00199510. PubMed DOI

Ciruna B., Rossant J. FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Developmental Cell. 2001;1(1):37–49. doi: 10.1016/S1534-5807(01)00017-X. PubMed DOI

Zhou B. P., Deng J., Xia W., et al. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biology. 2004;6(10):931–940. doi: 10.1038/ncb1173. PubMed DOI

Vincent T., Neve E. P. A., Johnson J. R., et al. A SNAIL1–SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial–mesenchymal transition. Nature Cell Biology. 2009;11(8):943–950. doi: 10.1038/ncb1905. PubMed DOI PMC

Greco K. V., Iqbal A. J., Rattazzi L., et al. High density micromass cultures of a human chondrocyte cell line: a reliable assay system to reveal the modulatory functions of pharmacological agents. Biochemical Pharmacology. 2011;82(12):1919–1929. doi: 10.1016/j.bcp.2011.09.009. PubMed DOI PMC

Geach T. J., Zimmerman L. B. Developmental genetics in Xenopus tropicalis . Methods in Molecular Biology. 2011;770:77–117. doi: 10.1007/978-1-61779-210-6_4. PubMed DOI

Paredes R., Ishibashi S., Borrill R., Robert J., Amaya E. Xenopus: an in vivo model for imaging the inflammatory response following injury and bacterial infection. Developmental Biology. 2015;408(2):213–228. doi: 10.1016/j.ydbio.2015.03.008. PubMed DOI PMC

Stosiek P., Kasper M., Karsten U. Expression of cytokeratins 8 and 18 in human Sertoli cells of immature and atrophic seminiferous tubules. Differentiation. 1990;43(1):66–70. doi: 10.1111/j.1432-0436.1990.tb00431.x. PubMed DOI

Appert A., Fridmacher V., Locquet O., Magre S. Patterns of keratins 8, 18 and 19 during gonadal differentiation in the mouse: sex- and time-dependent expression of keratin 19. Differentiation. 1998;63(5):273–284. doi: 10.1046/j.1432-0436.1998.6350273.x. PubMed DOI

Xiong H., Hong J., du W., et al. Roles of STAT3 and ZEB1 proteins in E-cadherin down-regulation and human colorectal cancer epithelial-mesenchymal transition. Journal of Biological Chemistry. 2012;287(8):5819–5832. doi: 10.1074/jbc.M111.295964. PubMed DOI PMC

Lee J., Kim J. C. K., Lee S.-E., et al. Signal transducer and activator of transcription 3 (STAT3) protein suppresses adenoma-to-carcinoma transition in Apc min/+ mice via regulation of Snail-1 (SNAI) protein stability. Journal of Biological Chemistry. 2012;287(22):18182–18189. doi: 10.1074/jbc.M111.328831. PubMed DOI PMC

Beurel E., Jope R. S. Differential regulation of STAT family members by glycogen synthase kinase-3. Journal of Biological Chemistry. 2008;283(32):21934–21944. doi: 10.1074/jbc.M802481200. PubMed DOI PMC

Câmara J., Jarai G. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-α . Fibrogenesis & Tissue Repair. 2010;3(1) doi: 10.1186/1755-1536-3-2. PubMed DOI PMC

Przygodzka P., Papiewska-Pajak I., Bogusz H., et al. Neuromedin U is upregulated by Snail at early stages of EMT in HT29 colon cancer cells. Biochimica et Biophysica Acta (BBA) - General Subjects. 2016;1860(11):2445–2453. doi: 10.1016/j.bbagen.2016.07.012. PubMed DOI

Jolly M. K., Huang B., Lu M., Mani S. A., Levine H., Ben-Jacob E. Towards elucidating the connection between epithelial–mesenchymal transitions and stemness. Journal of The Royal Society Interface. 2014;11(101, article 20140962) doi: 10.1098/rsif.2014.0962. PubMed DOI PMC

Brabletz S., Bajdak K., Meidhof S., et al. The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells. The EMBO Journal. 2011;30(4):770–782. doi: 10.1038/emboj.2010.349. PubMed DOI PMC

Zhou C., Jiang H., Zhang Z., et al. ZEB1 confers stem cell-like properties in breast cancer by targeting neurogenin-3. Oncotarget. 2017;8(33):54388–54401. doi: 10.18632/oncotarget.17077. PubMed DOI PMC

Lustig L., Casanova M. B., Vianello S. E., Denduchis B., Meroni S., Cigorraga S. Immunodetection of cell adhesion molecules in rat Sertoli cell cultures. American Journal of Reproductive Immunology. 1998;39(6):399–405. doi: 10.1111/j.1600-0897.1998.tb00377.x. PubMed DOI

Veevers-Lowe J., Ball S. G., Shuttleworth A., Kielty C. M. Mesenchymal stem cell migration is regulated by fibronectin through α5β1-integrin-mediated activation of PDGFR-β and potentiation of growth factor signals. Journal of Cell Science. 2011;124(8):1288–1300. doi: 10.1242/jcs.076935. PubMed DOI PMC

Brown K. A., Aakre M. E., Gorska A. E., et al. Induction by transforming growth factor-β1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Research. 2004;6(3):R215–R231. doi: 10.1186/bcr778. PubMed DOI PMC

Shimabukuro Y., Terashima H., Takedachi M., et al. Fibroblast growth factor-2 stimulates directed migration of periodontal ligament cells via PI3K/AKT signaling and CD44/hyaluronan interaction. Journal of Cellular Physiology. 2011;226(3):809–821. doi: 10.1002/jcp.22406. PubMed DOI

Baljinnyam E., Umemura M., Chuang C., et al. Epac1 increases migration of endothelial cells and melanoma cells via FGF2-mediated paracrine signaling. Pigment Cell & Melanoma Research. 2014;27(4):611–620. doi: 10.1111/pcmr.12250. PubMed DOI PMC

Ben Amar M., Wu M. Re-epithelialization: advancing epithelium frontier during wound healing. Journal of The Royal Society Interface. 2014;11(93, article 20131038) doi: 10.1098/rsif.2013.1038. PubMed DOI PMC

Yan C., Grimm W. A., Garner W. L., et al. Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-α through bone morphogenic protein-2. The American Journal of Pathology. 2010;176(5):2247–2258. doi: 10.2353/ajpath.2010.090048. PubMed DOI PMC

Kwon Y. W., Heo S. C., Jeong G. O., et al. Tumor necrosis factor-α-activated mesenchymal stem cells promote endothelial progenitor cell homing and angiogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2013;1832(12):2136–2144. doi: 10.1016/j.bbadis.2013.08.002. PubMed DOI

Chen H., Min X.-H., Wang Q.-Y., et al. Pre-activation of mesenchymal stem cells with TNF-α, IL-1β and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury. Scientific Reports. 2015;5(1):p. 8718. doi: 10.1038/srep08718. PubMed DOI PMC

Egea V., von Baumgarten L., Schichor C., et al. TNF-α respecifies human mesenchymal stem cells to a neural fate and promotes migration toward experimental glioma. Cell Death and Differentiation. 2011;18(5):853–863. doi: 10.1038/cdd.2010.154. PubMed DOI PMC

Croes M., Oner F. C., Kruyt M. C., et al. Proinflammatory mediators enhance the osteogenesis of human mesenchymal stem cells after lineage commitment. PLoS One. 2015;10(7, article e0132781) doi: 10.1371/journal.pone.0132781. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...