The interconnection between cytokeratin and cell membrane-bound β-catenin in Sertoli cells derived from juvenile Xenopus tropicalis testes

. 2019 Dec 20 ; 8 (12) : . [epub] 20191220

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31822471

Sertoli cells (SCs) play a central role in the determination of male sex during embryogenesis and spermatogenesis in adulthood. Failure in SC development is responsible for male sterility and testicular cancer. Before the onset of puberty, SCs are immature and differ considerably from mature cells in post-pubertal individuals regarding their morphology and biochemical activity. The major intermediate filament (IF) in mature SCs is vimentin, anchoring germ cells to the seminiferous epithelium. The collapse of vimentin has resulted in the disintegration of seminiferous epithelium and subsequent germ cell apoptosis. However, another IF, cytokeratin (CK) is observed only transiently in immature SCs in many species. Nevertheless, its function in SC differentiation is poorly understood. We examined the interconnection between CK and cell junctions using membrane β-catenin as a marker during testicular development in the Xenopus tropicalis model. Immunohistochemistry on juvenile (5 months old) testes revealed co-expression of CK, membrane β-catenin and E-cadherin. Adult (3-year-old males) samples confirmed only E-cadherin expression; CK and β-catenin were lost. To study the interconnection between CK and β-catenin-based cell junctions, the culture of immature SCs (here called XtiSCs) was employed. Suppression of CK by acrylamide in XtiSCs led to breakdown of membrane-bound β-catenin but not F-actin and β-tubulin or cell-adhesion proteins (focal adhesion kinase and integrin β1). In contrast to the obvious dependence of membrane β-catenin on CK stability, the detachment of β-catenin from the plasma membrane via uncoupling of cadherins by Ca2+ chelator EGTA had no effect on CK integrity. Interestingly, CHIR99021, a GSK3 inhibitor, also suppressed the CK network, resulting in the inhibition of XtiSCs cell-to-cell contacts and testicular development in juvenile frogs. This study suggests a novel role of CK in the retention of β-catenin-based junctions in immature SCs, and thus provides structural support for seminiferous tubule formation and germ cell development.

Zobrazit více v PubMed

Ameen N. A., Figueroa Y. and Salas P. J. (2001). Anomalous apical plasma membrane phenotype in CK8-deficient mice indicates a novel role for intermediate filaments in the polarization of simple epithelia. J. Cell Sci. 114, 563-575. PubMed

Appert A., Fridmacher V., Locquet O. and Magre S. (1998). Patterns of keratins 8, 18 and 19 during gonadal differentiation in the mouse: sex- and time-dependent expression of keratin 19. Differentiation 63, 273 10.1046/j.1432-0436.1998.6350273.x PubMed DOI

Barrionuevo F., Burgos M. and Jiménez R. (2011). Origin and function of embryonic Sertoli cells. Biomol. Concepts 2, 537-547. 10.1515/BMC.2011.044 PubMed DOI

Bhattacharjee R., Goswami S., Dudiki T., Popkie A. P., Phiel C. J., Kline D. and Vijayaraghavan S. (2015). Targeted disruption of glycogen synthase kinase 3A (GSK3A) in mice affects sperm motility resulting in male infertility. Biol. Reprod. 92, 65 10.1095/biolreprod.114.124495 PubMed DOI PMC

Bilic J., Huang Y. L., Davidson G., Zimmermann T., Cruciat C. M., Bienz M. and Niehrs C. (2007). Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science 316, 1619-1622. 10.1126/science.1137065. PubMed DOI

Chairoungdua A., Smith D. L., Pochard P., Hull M. and Caplan M. J. (2010). Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. J. Cell Biol. 190, 1079-1091. 10.1083/jcb.201002049 PubMed DOI PMC

Chen E. Y., DeRan M. T., Ignatius M. S., Grandinetti K. B., Clagg R., McCarthy K. M., Lobbardi R. M., Brockmann J., Keller C., Wu X. et al. (2014). Glycogen synthase kinase 3 inhibitors induce the canonical WNT/β-catenin pathway to suppress growth and self-renewal in embryonal rhabdomyosarcoma. Proc. Natl. Acad. Sci. USA 111, 5349-5354. 10.1073/pnas.1317731111 PubMed DOI PMC

Daugherty R. L. and Gottardi C. J. (2007). Phospho-regulation of β-Catenin adhesion and signaling functions. Physiology 22, 303-309. 10.1152/physiol.00020.2007 PubMed DOI PMC

de Winter J. P., Vanderstichele H. M., Timmerman M. A., Blok L. J., Themmen A. P. and de Jong F. H. (1993). Activin is produced by rat Sertoli cells in vitro and can act as an autocrine regulator of Sertoli cell function. Endocrinology 132, 975-982. 10.1210/endo.132.3.7679985 PubMed DOI

Duncan A. R., Forcina J. J., Tsang P. C. W. and Townson D. H. (2009). Disruption of cytokeratin 18-containing intermediate filaments in bovine luteal cells: effects of acrylamide on progesterone secretion, fas expression, and FasL-induced apoptosis. Biol. Reprod. 81, 558-558. 10.1093/biolreprod/81.s1.558 DOI

Engl W., Arasi B., Yap L. L., Thiery J. P. and Viasnoff V. (2014). Actin dynamics modulate mechanosensitive immobilization of E-cadherin at adherens junctions. Nat. Cell Biol. 16, 584-591. 10.1038/ncb2973 PubMed DOI

Fagotto F., Funayama N., Gluck U. and Gumbiner B. M. (1996). Binding to cadherins antagonizes the signaling activity of beta-catenin during axis formation in Xenopus. J. Cell Biol. 132, 1105-1114. 10.1083/jcb.132.6.1105 PubMed DOI PMC

Francipane M. G. and Lagasse E. (2015). The lymph node as a new site for kidney organogenesis. Stem Cells Transl. Med. 4, 295-307. 10.5966/sctm.2014-0208 PubMed DOI PMC

García-Reyes B., Witt L., Jansen B., Karasu E., Gehring T., Leban J., Henne-Bruns D., Pichlo C., Brunstein E., Baumann U. et al. (2018). Discovery of inhibitor of wnt production 2 (IWP-2) and related compounds as selective ATP-competitive inhibitors of casein kinase 1 (CK1) δ/ε. J. Med. Chem. 61, 4087-4102. 10.1021/acs.jmedchem.8b00095 PubMed DOI

Geach T. J. and Zimmerman L. B. (2011). Developmental genetics in Xenopus tropicalis. Methods Mol. Biol. 770, 77-117. 10.1007/978-1-61779-210-6_4 PubMed DOI

Hanada S., Harada M., Kumemura H., Omary M. B., Kawaguchi T., Taniguchi E., Koga H., Yoshida T., Maeyama M., Baba S. et al. (2005). Keratin-containing inclusions affect cell morphology and distribution of cytosolic cellular components. Exp. Cell Res. 304, 471-482. 10.1016/j.yexcr.2004.12.009 PubMed DOI

Handelsman D. J., Spaliviero J. A. and Phippard A. F. (1990). Highly vectorial secretion of inhibin by primate sertoli cellsin vitro*. J. Clin. Endocrinol. Metab. 71, 1235-1238. 10.1210/jcem-71-5-1235 PubMed DOI

Hartsock A. and Nelson W. J. (2008). Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta 1778, 660-669. 10.1016/j.bbamem.2007.07.012 PubMed DOI PMC

Heasman J., Crawford A., Goldstone K., Garner-Hamrick P., Gumbiner B., McCrea P., Kintner C., Noro C. Y. and Wylie C. (1994). Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79, 791-803. 10.1016/0092-8674(94)90069-8 PubMed DOI

Huber A. H. and Weis W. I. (2001). The structure of the β-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by β-catenin. Cell 105, 391-402. 10.1016/S0092-8674(01)00330-0 PubMed DOI

Johnson M., Sharma M., Jamieson C., Henderson J. M., Mok M. T. S., Bendall L. and Henderson B. R. (2009). Regulation of β-catenin trafficking to the membrane in living cells. Cell. Signal. 21, 339-348. 10.1016/j.cellsig.2008.11.004 PubMed DOI

Kaufhold S. and Bonavida B. (2014). Central role of Snail1 in the regulation of EMT and resistance in cancer: a target for therapeutic intervention. J. Exp. Clin. Cancer Res. 33, 62 10.1186/s13046-014-0062-0 PubMed DOI PMC

Kramer T., Schmidt B. and Lo Monte F. (2012). Small-molecule inhibitors of GSK-3: structural insights and their application to alzheimer's disease models. Int. J. Alzheimers. Dis. 2012, 1-32. 10.1155/2012/381029 PubMed DOI PMC

Ku N. O. and Omary M. B. (1997). Phosphorylation of human keratin 8 in vivo at conserved head domain serine 23 and at epidermal growth factor-stimulated tail domain serine 431. J. Biol. Chem. 272, 7556-7564. 10.1074/jbc.272.11.7556. PubMed DOI

Lee C.-H. and Taketo T. (1994). Normal onset, but prolonged expression, of Sry gene in the B6.YDOM sex-reversed mouse gonad. Dev. Biol. 165, 442-452. 10.1006/dbio.1994.1266 PubMed DOI

Makarova G., Bette M., Schmidt A., Jacob R., Cai C., Rodepeter F., Betz T., Sitterberg J., Bakowsky U., Moll R. et al. (2013). Epidermal growth factor-induced modulation of cytokeratin expression levels influences the morphological phenotype of head and neck squamous cell carcinoma cells. Cell Tissue Res. 351, 59-72. 10.1007/s00441-012-1500-y. PubMed DOI

Mital P., Kaur G. and Dufour J. M. (2010). Immunoprotective sertoli cells: making allogeneic and xenogeneic transplantation feasible. Reproduction 139, 495-504. 10.1530/REP-09-0384 PubMed DOI

Myers M., Ebling F. J. P., Nwagwu M., Boulton R., Wadhwa K., Stewart J. and Kerr J. B. (2005). Atypical development of Sertoli cells and impairment of spermatogenesis in the hypogonadal (hpg) mouse. J. Anat. 207, 797-811. 10.1111/j.1469-7580.2005.00493.x PubMed DOI PMC

Nazarian H., Ghaffari Novin M., Jalili M. R., Mirfakhraie R., Heidari M. H., Hosseini S. J., Norouzian M. and Ehsani N. (2014). Expression of Glycogen synthase kinase 3-β (GSK3-β) gene in azoospermic men. Iran. J. Reprod. Med. 12, 313-320. PubMed PMC

Nguyen T. M. X., Vegrichtova M., Tlapakova T., Krulova M. and Krylov V. (2019). Epithelial-mesenchymal transition promotes the differentiation potential of Xenopus tropicalis immature Sertoli cells. Stem Cells Int ., 8387478 10.1155/2019/8387478. PubMed DOI PMC

Nistal M., Paniagua R., Abaurrea M. A. and Santamaría L. (1982). Hyperplasia and the immature appearance of Sertoli cells in primary testicular disorders. Hum. Pathol. 13, 3-12. 10.1016/S0046-8177(82)80132-9 PubMed DOI

Pachenari N., Kiani S. and Javan M. (2017). Inhibition of glycogen synthase kinase 3 increased subventricular zone stem cells proliferation. Biomed. Pharmacother. 93, 1074-1082. 10.1016/j.biopha.2017.07.043 PubMed DOI

Paranko J., Kallajoki M., Pelliniemi L. J., Lehto V.-P. and Virtanen I. (1986). Transient coexpression of cytokeratin and vimentin in differentiating rat Sertoli cells. Dev. Biol. 117, 35-44. 10.1016/0012-1606(86)90345-3 PubMed DOI

Petrosyan A., Ali M. F. and Cheng P.-W. (2015). Keratin 1 plays a critical role in golgi localization of core 2 N-acetylglucosaminyltransferase M via interaction with its cytoplasmic tail. J. Biol. Chem. 290, 6256-6269. 10.1074/jbc.M114.618702 PubMed DOI PMC

Potokar M., Kreft M., Li L., Daniel Andersson J., Pangršič T., Chowdhury H. H., Pekny M. and Zorec R. (2007). Cytoskeleton and vesicle mobility in astrocytes. Traffic 8, 12-20. 10.1111/j.1600-0854.2006.00509.x PubMed DOI

Rogatsch H., Hittmair A., Mikuz G., Feichtinger H. and Jezek D. (1996). Expression of vimentin, cytokeratin, and desmin in Sertoli cells of human fetal, cryptorchid, and tumour-adjacent testicular tissue. Virchows Arch. 427, 497-502. 10.1007/BF00199510 PubMed DOI

Setchell B. P. (2009). Blood-testis barrier, junctional and transport proteins and spermatogenesis. Adv. Exp. Med. Biol. 636, 212-233. 10.1007/978-0-387-09597-4_12 PubMed DOI

Shabana A. H. M., Oboeuf M. and Forest N. (1994). Cytoplasmic desmosomes and intermediate filament disturbance following acrylamide treatment in cultured rat keratinocytes. Tissue Cell 26, 43-55. 10.1016/0040-8166(94)90082-5 PubMed DOI

Sharpe R. M., McKinnell C., Kivlin C. and Fisher J. S. (2003). Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125, 769-784. 10.1530/rep.0.1250769 PubMed DOI

Smaill J. B., Palmer B. D., Rewcastle G. W., Denny W. A., McNamara D. J., Dobrusin E. M., Bridges A. J., Zhou H., Showalter H. D., Winters R. T. et al. (1999). Tyrosine kinase inhibitors. 15. 4-(Phenylamino)quinazoline and 4-(phenylamino)pyrido[d]pyrimidine acrylamides as irreversible inhibitors of the ATP binding site of the epidermal growth factor receptor. J. Med. Chem. 42, 1803-1815. 10.1021/jm9806603. PubMed DOI

Sonavane P. R., Wang C., Dzamba B., Weber G. F., Periasamy A. and DeSimone D. W. (2017). Mechanical and signaling roles for keratin intermediate filaments in the assembly and morphogenesis of Xenopus mesendoderm tissue at gastrulation. Development 144, 4363-4376. 10.1242/dev.155200 PubMed DOI PMC

Steinberger A. and Steinberger E. (1971). Replication pattern of Sertoli cells in maturing rat testis in vivo and in organ culture. Biol. Reprod. 4, 84-87. 10.1093/biolreprod/4.1.84 PubMed DOI

Stosiek P., Kasper M. and Karsten U. (1990). Expression of cytokeratins 8 and 18 in human Sertoli cells of immature and atrophic seminiferous tubules. Differentiation 43, 66-70. 10.1111/j.1432-0436.1990.tb00431.x PubMed DOI

Tlapakova T., Nguyen T. M. X., Vegrichtova M., Sidova M., Strnadova K., Blahova M. and Krylov V. (2016). Identification and characterization of Xenopus tropicalis common progenitors of Sertoli and peritubular myoid cell lineages. Biol. Open 5, 1275-1282. 10.1242/bio.019265 PubMed DOI PMC

Towbin H., Staehelin T. and Gordon J. (1992). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979. Biotechnology 24, 145-149. PubMed

Vijayaraj P., Kröger C., Reuter U., Windoffer R., Leube R. E. and Magin T. M. (2009). Keratins regulate protein biosynthesis through localization of GLUT1 and -3 upstream of AMP kinase and Raptor. J. Cell Biol. 187, 175-184. 10.1083/jcb.200906094 PubMed DOI PMC

Wahab-Wahlgren A., Holst M., Ayele D., Sultana T., Parvinen M., Gustafsson K., Granholm T. and Söder O. (2000). Constitutive production of interleukin-1alpha mRNA and protein in the developing rat testis. Int. J. Androl. 23, 360-365. 10.1046/j.1365-2605.2000.t01-1-00253.x PubMed DOI

Wen Q., Tang E. I., Xiao X., Gao Y., Chu D. S., Mruk D. D., Silvestrini B. and Cheng C. Y. (2016). Transport of germ cells across the seminiferous epithelium during spermatogenesis-the involvement of both actin- and microtubule-based cytoskeletons. Tissue Barriers 4, e1265042 10.1080/21688370.2016.1265042 PubMed DOI PMC

Wolski K. M., Perrault C., Tran-Son-Tay R. and Cameron D. F. (2005). Strength measurement of the Sertoli-spermatid junctional complex. J. Androl. 26, 354-359. 10.2164/jandrol.04142 PubMed DOI

Wu K., Fan J., Zhang L., Ning Z., Zeng J., Zhou J., Li L., Chen Y., Zhang T., Wang X. et al. (2012). PI3K/Akt to GSK3β/β-catenin signaling cascade coordinates cell colonization for bladder cancer bone metastasis through regulating ZEB1 transcription. Cell. Signal. 24, 2273-2282. 10.1016/j.cellsig.2012.08.004 PubMed DOI

Wu S. K., Gomez G. A., Michael M., Verma S., Cox H. L., Lefevre J. G., Parton R. G., Hamilton N. A., Neufeld Z. and Yap A. S. (2014). Cortical F-actin stabilization generates apical–lateral patterns of junctional contractility that integrate cells into epithelia. Nat. Cell Biol. 16, 167-178. 10.1038/ncb2900 PubMed DOI

Yoshida T., Sopko N. A., Kates M., Liu X., Joice G., McConkey D. J. and Bivalacqua T. J. (2018). Three-dimensional organoid culture reveals involvement of Wnt/β-catenin pathway in proliferation of bladder cancer cells. Oncotarget 9, 11060-11070. 10.18632/oncotarget.24308 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...