Therapeutic potential of Sertoli cells in vivo: alleviation of acute inflammation and improvement of sperm quality
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21-08-00488
Ministerstvo Zdravotnictví Ceské Republiky
252827
Grantová Agentura, Univerzita Karlova
CZ.1.05/1.1.00/02.0109
European Regional Development Fund
PubMed
39227878
PubMed Central
PMC11373210
DOI
10.1186/s13287-024-03897-9
PII: 10.1186/s13287-024-03897-9
Knihovny.cz E-zdroje
- Klíčová slova
- Inflammation, Macrophages, Sertoli cells, Sperm, Testes,
- MeSH
- lipopolysacharidy toxicita MeSH
- makrofágy metabolismus MeSH
- motilita spermií MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- Sertoliho buňky * metabolismus MeSH
- spermie * metabolismus MeSH
- testis MeSH
- tyrosinkinasa c-Mer metabolismus genetika MeSH
- zánět * patologie terapie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipopolysacharidy MeSH
- Mertk protein, mouse MeSH Prohlížeč
- tyrosinkinasa c-Mer MeSH
BACKGROUND: Inflammation-induced testicular damage is a significant contributing factor to the increasing incidence of infertility. Traditional treatments during the inflammatory phase often fail to achieve the desired fertility outcomes, necessitating innovative interventions such as cell therapy. METHODS: We explored the in vivo properties of intravenously administered Sertoli cells (SCs) in an acute lipopolysaccharide (LPS)-induced inflammatory mouse model. Infiltrating and resident myeloid cell phenotypes were assessed using flow cytometry. The impact of SC administration on testis morphology and germ cell quality was evaluated using computer-assisted sperm analysis (CASA) and immunohistochemistry. RESULTS: SCs demonstrated a distinctive migration pattern, importantly they preferentially concentrated in the testes and liver. SC application significantly reduced neutrophil infiltration as well as preserved the resident macrophage subpopulations. SCs upregulated MerTK expression in both interstitial and peritubular macrophages. Applied SC treatment exhibited protective effects on sperm including their motility and kinematic parameters, and maintained the physiological testicular morphology. CONCLUSION: Our study provides compelling evidence of the therapeutic efficacy of SC transplantation in alleviating acute inflammation-induced testicular damage. These findings contribute to the expanding knowledge on the potential applications of cell-based therapies for addressing reproductive health challenges and offer a promising approach for targeted interventions in male infertility.
Department of Zoology Faculty of Science Charles University Vinicna 7 Prague 2 128 00 Czech Republic
Zobrazit více v PubMed
Sharlip ID, Jarow JP, Belker AM, Lipshultz LI, Sigman M, Thomas AJ, et al. Best practice policies for male infertility. Fertil Steril. 2002;77:873–82. 10.1016/S0015-0282(02)03105-9 PubMed DOI
Fijak M, Pilatz A, Hedger MP, Nicolas N, Bhushan S, Michel V, et al. Infectious, inflammatory and ‘autoimmune’ male factor infertility: how do rodent models inform clinical practice? Hum Reprod Update. 2018;24:416–41. 10.1093/humupd/dmy009 PubMed DOI PMC
Gallegos-Avila G, Ortega-Martínez M, Ramos-González B, Tijerina-Menchaca R, Ancer-Rodríguez J, Jaramillo-Rangel G. Ultrastructural findings in semen samples of infertile men infected with Chlamydia trachomatis and mycoplasmas. Fertil Steril. 2009;91:915–9. 10.1016/j.fertnstert.2008.05.035 PubMed DOI
Sobinoff AP, Dando SJ, Redgrove KA, Sutherland JM, Stanger SJ, Armitage CW, et al. Chlamydia muridarum infection-induced destruction of male germ cells and sertoli cells is partially prevented by Chlamydia major outer membrane protein-specific immune CD4 cells. Biol Reprod. 2015;92:27. 10.1095/biolreprod.114.124180 PubMed DOI
Bryan ER, Kim J, Beagley KW, Carey AJ. Testicular inflammation and infertility: could chlamydial infections be contributing? Am J Reprod Immunol. 2020;84:e13286. 10.1111/aji.13286 PubMed DOI
Henkel R, Offor U, Fisher D. The role of infections and leukocytes in male infertility. Andrologia. 2021;53:e13743. 10.1111/and.13743 PubMed DOI
Liakath Ali F, Park HS, Beckman A, Eddy AC, Alkhrait S, Ghasroldasht MM, et al. Fertility Protection, a Novel Concept: umbilical cord mesenchymal stem cell-derived exosomes protect against Chemotherapy-Induced Testicular cytotoxicity. Int J Mol Sci. 2024;25:60.10.3390/ijms25010060 PubMed DOI PMC
Calogero AE, Condorelli RA, Russo GI, Vignera S la. Conservative nonhormonal options for the treatment of male infertility: Antibiotics, anti-inflammatory drugs, and antioxidants. Biomed Res Int. 2017;2017:4650182. 10.1155/2017/4650182 PubMed DOI PMC
Behnke J, Kremer S, Shahzad T, Chao CM, Böttcher-Friebertshäuser E, Morty RE, et al. MSC Based therapies—New perspectives for the injured lung. J Clin Med. 2020;9:682. 10.3390/jcm9030682 PubMed DOI PMC
Jasim SA, Yumashev AV, Abdelbasset WK, Margiana R, Markov A, Suksatan W, et al. Shining the light on clinical application of mesenchymal stem cell therapy in autoimmune diseases. Stem Cell Res Ther. 2022;13:1–15. 10.1186/s13287-022-02782-7 PubMed DOI PMC
Kadam P, Ntemou E, Baert Y, Van Laere S, Van Saen D, Goossens E. Co-transplantation of mesenchymal stem cells improves spermatogonial stem cell transplantation efficiency in mice. Stem Cell Res Ther. 2018;9:317. 10.1186/s13287-018-1065-0 PubMed DOI PMC
Hsiao CH, Ji ATQ, Chang CC, Cheng CJ, Lee LM, Ho JHC. Local injection of mesenchymal stem cells protects testicular torsion-induced germ cell injury Rocky Tuan; Timothy O’Brien. Stem Cell Res Ther. 2015;6:113. 10.1186/s13287-015-0079-0 PubMed DOI PMC
Griswold MD. 50 years of spermatogenesis: sertoli cells and their interactions with germ cells. Biol Reprod. 2018;99:87. 10.1093/biolre/ioy027 PubMed DOI PMC
Kaur G, Thompson LA, Dufour JM. Sertoli cells–immunological sentinels of spermatogenesis. Semin Cell Dev Biol. 2014;30:36–44. 10.1016/j.semcdb.2014.02.011 PubMed DOI PMC
Kamińska A, Pardyak L, Lustofin S, Gielata K, Arent Z, Pietsch-Fulbiszewska A, et al. 9-cis-retinoic acid signaling in sertoli cells regulates their immunomodulatory function to control lymphocyte physiology and Treg differentiation. Reprod Biol Endocrinol. 2024;22:75. 10.1186/s12958-024-01246-2 PubMed DOI PMC
Washburn RL, Hibler T, Kaur G, Dufour JM. Sertoli cell Immune Regulation: a double-edged Sword. Front Immunol. 2022;13:913502. 10.3389/fimmu.2022.913502 PubMed DOI PMC
Chiappalupi S, Salvadori L, Borghi M, Mancuso F, Pariano M, Riuzzi F, et al. Grafted sertoli cells exert Immunomodulatory Non-immunosuppressive effects in Preclinical models of infection and Cancer. Cells. 2024;13:544. 10.3390/cells13060544 PubMed DOI PMC
Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Restoration of Spermatogenesis in Infertile mice by sertoli cell transplantation. Biol Reprod. 2003;68:1064–71. 10.1095/biolreprod.102.009977 PubMed DOI
Zhang Z, Shao S, Shetty G, Meistrich ML. Donor sertoli cells transplanted into irradiated rat testes stimulate partial recovery of endogenous spermatogenesis. Reproduction. 2009;137:497–508. 10.1530/REP-08-0120 PubMed DOI
Washburn RL, Hibler T, Thompson LA, Kaur G, Dufour JM. Therapeutic application of sertoli cells for treatment of various diseases. Semin Cell Dev Biol. 2022;121:10–23. 10.1016/j.semcdb.2021.04.007 PubMed DOI
Campese AF, Grazioli P, de Cesaris P, Riccioli A, Bellavia D, Pelullo M, et al. Mouse sertoli cells sustain de novo generation of regulatory T cells by triggering the notch pathway through soluble JAGGED1. Biol Reprod. 2014;90:53. 10.1095/biolreprod.113.113803 PubMed DOI
Gao J, Wang X, Wang Y, Han F, Cai W, Zhao B, et al. Murine sertoli cells promote the development of tolerogenic dendritic cells: a pivotal role of galectin-1. Immunology. 2016;148:253–65. 10.1111/imm.12598 PubMed DOI PMC
Chen R, Wang F, Chen Y, Han D. Immune homeostasis and disorder in the testis – roles of sertoli cells. J Reprod Immunol. 2022;152:103625. 10.1016/j.jri.2022.103625 PubMed DOI
Porubska B, Vasek D, Somova V, Hajkova M, Hlaviznova M, Tlapakova T, et al. Sertoli Cells Possess Immunomodulatory Properties and the ability of mitochondrial transfer similar to mesenchymal stromal cells. Stem Cell Rev Rep. 2021;17:1905–16. 10.1007/s12015-021-10197-9 PubMed DOI
Bhushan S, Theas MS, Guazzone VA, Jacobo P, Wang M, Fijak M, et al. Immune Cell subtypes and their function in the Testis. Front Immunol. 2020;11:583304. 10.3389/fimmu.2020.583304 PubMed DOI PMC
Lang V, Ferencik S, Ananthasubramaniam B, Kramer A, Maier B. Susceptibility rhythm to bacterial endotoxin in myeloid clock-knockout mice. Elife. 2021;10:e62469. 10.7554/eLife.62469 PubMed DOI PMC
Bilinska B, Hejmej A, Kotula-Balak M. Preparation of testicular samples for histology and immunohistochemistry. Methods Mol Biol. 2018;1748:17–36. 10.1007/978-1-4939-7698-0_3 PubMed DOI
Nguyen TMX, Vegrichtova M, Tlapakova T, Krulova M, Krylov V. The interconnection between cytokeratin and cell membrane-bound β-catenin in sertoli cells derived from juvenile Xenopus tropicalis testes. Biol Open. 2019;8:bio043950. 10.1242/bio.043950 PubMed DOI PMC
Hedger MP. Immunophysiology and Pathology of inflammation in the Testis and Epididymis. J Androl. 2011;32:625. 10.2164/jandrol.111.012989 PubMed DOI PMC
Hajkova M, Javorkova E, Zajicova A, Trosan P, Holan V, Krulova M. A local application of mesenchymal stem cells and cyclosporine a attenuates immune response by a switch in macrophage phenotype. J Tissue Eng Regen Med. 2017;11:1456–65. 10.1002/term.2044 PubMed DOI
Bhushan S, Meinhardt A. The macrophages in testis function. J Reprod Immunol. 2017;119:107–12. 10.1016/j.jri.2016.06.008 PubMed DOI
Indumathy S, Pueschl D, Klein B, Fietz D, Bergmann M, Schuppe HC, et al. Testicular immune cell populations and macrophage polarisation in adult male mice and the influence of altered activin A levels. J Reprod Immunol. 2020;142:103204. 10.1016/j.jri.2020.103204 PubMed DOI
Mossadegh-Keller N, Gentek R, Gimenez G, Bigot S, Mailfert S, Sieweke MH. Developmental origin and maintenance of distinct testicular macrophage populations. J Exp Med. 2017;214:2829. 10.1084/jem.20170829 PubMed DOI PMC
Lindsay RS, Whitesell JC, Dew KE, Rodriguez E, Sandor AM, Tracy D, et al. MERTK on mononuclear phagocytes regulates T cell antigen recognition at autoimmune and tumor sites. J Exp Med. 2021;218:e20200464. 10.1084/jem.20200464 PubMed DOI PMC
Shi J, Gao S, Chen Z, Chen Z, Yun D, Wu X, et al. Absence of MerTK disrupts spermatogenesis in an age-dependent manner. Mol Cell Endocrinol. 2023;560:111815. 10.1016/j.mce.2022.111815 PubMed DOI
Gu X, Li SY, DeFalco T. Immune and vascular contributions to organogenesis of the testis and ovary. FEBS J. 2022;289:2386. 10.1111/febs.15848 PubMed DOI PMC
Azenabor A, Ekun AO, Akinloye O. Impact of inflammation on male Reproductive Tract. J Reprod Infertil. 2015;16:123–9. PubMed PMC
Mastrolia I, Foppiani EM, Murgia A, Candini O, Samarelli AV, Grisendi G, et al. Challenges in Clinical Development of Mesenchymal Stromal/Stem cells: Concise Review. Stem Cells Transl Med. 2019;8:1135–48. 10.1002/sctm.19-0044 PubMed DOI PMC
Li J, Wu Z, Zhao L, Liu Y, Su Y, Gong X et al. The heterogeneity of mesenchymal stem cells: an important issue to be addressed in cell therapy. Stem Cell Res Ther. 2023;14. PubMed PMC
Gong D, Zhang C, Li T, Zhang J, Zhang N, Tao Z, et al. Are sertoli cells a kind of mesenchymal stem cells? Am J Transl Res. 2017;9:1067–74. PubMed PMC
Kurtz A. Mesenchymal stem cell delivery routes and fate. Int J Stem Cells. 2008;1:1–7. 10.15283/ijsc.2008.1.1.1 PubMed DOI PMC
Zhong L, Yang M, Zou X, Du T, Xu H, Sun J. Human umbilical cord multipotent mesenchymal stromal cells alleviate acute ischemia-reperfusion injury of spermatogenic cells via reducing inflammatory response and oxidative stress. Stem Cell Res Ther. 2020;11:294. 10.1186/s13287-020-01813-5 PubMed DOI PMC
Moritoki Y, Kojima Y, Mizuno K, Kamisawa H, Kohri K, Hayashi Y. Intratesticular pressure after testicular torsion as a predictor of subsequent spermatogenesis: a rat model. BJU Int. 2012;109:466–70. 10.1111/j.1464-410X.2011.10279.x PubMed DOI
Winnall WR, Muir JA, Hedger MP. Rat resident testicular macrophages have an alternatively activated phenotype and constitutively produce interleukin-10 in vitro. J Leukoc Biol. 2011;90:133–43. 10.1189/jlb.1010557 PubMed DOI
Celebi M, Paul AGA. Blocking E-selectin inhibits ischaemia-reperfusion-induced neutrophil recruitment to the murine testis. Andrologia. 2008;40:235–9. 10.1111/j.1439-0272.2008.00849.x PubMed DOI
Bouchery T, Harris N. Neutrophil–macrophage cooperation and its impact on tissue repair. Immunol Cell Biol. 2019;97:289–98. 10.1111/imcb.12241 PubMed DOI
Barman PK, Shin JE, Lewis SA, Kang S, Wu D, Wang Y, et al. Production of MHCII-expressing classical monocytes increases during aging in mice and humans. Aging Cell. 2022;21:e13701. 10.1111/acel.13701 PubMed DOI PMC
Guilliams M, Mildner A, Yona S. Developmental and Functional Heterogeneity of monocytes. Immunity. 2018;49:595–613. 10.1016/j.immuni.2018.10.005 PubMed DOI
Bain CC, Bravo-Blas A, Scott CL, Gomez Perdiguero E, Geissmann F, Henri S, et al. Constant replenishment from circulating monocytes maintains the macrophage pool in adult intestine. Nat Immunol. 2014;15:929. 10.1038/ni.2967 PubMed DOI PMC
Wright PB, McDonald E, Bravo-Blas A, Baer HM, Heawood A, Bain CC, et al. The mannose receptor (CD206) identifies a population of colonic macrophages in health and inflammatory bowel disease. Sci Rep. 2021;11:19616. 10.1038/s41598-021-98611-7 PubMed DOI PMC
Gu X, Li SY, DeFalco T. Immune and vascular contributions to organogenesis of the testis and ovary. FEBS J. 2022;289:2386–408. 10.1111/febs.15848 PubMed DOI PMC
Wanjari UR, Gopalakrishnan AV. A review on immunological aspects in male reproduction: an immune cells and cytokines. J Reprod Immunol. 2023;158:103984. 10.1016/j.jri.2023.103984 PubMed DOI
Hayrabedyan S, Todorova K, Jabeen A, Metodieva G, Toshkov S, Metodiev MV, et al. Sertoli cells have a functional NALP3 inflammasome that can modulate autophagy and cytokine production. Sci Rep. 2016;6:18896. 10.1038/srep18896 PubMed DOI PMC
Martínez-Pastor F. What is the importance of sperm subpopulations? Anim Reprod Sci. 2022;246:106844. 10.1016/j.anireprosci.2021.106844 PubMed DOI
Ferraz MAMM, Morató R, Yeste M, Arcarons N, Pena AI, Tamargo C, et al. Evaluation of sperm subpopulation structure in relation to in vitro sperm–oocyte interaction of frozen-thawed semen from Holstein bulls. Theriogenology. 2014;81:1067–72. 10.1016/j.theriogenology.2014.01.033 PubMed DOI
Sheng ZY, Gao N, Wang ZY, Cui XY, Zhou DS, Fan DY, et al. Sertoli cells are susceptible to ZIKV infection in mouse testis. Front Cell Infect Microbiol. 2017;7:274103.10.3389/fcimb.2017.00272 PubMed DOI PMC
Galderisi U, Peluso G, Di Bernardo G. Clinical trials based on mesenchymal stromal cells are exponentially increasing: where are we in recent years? Stem Cell Reviews Rep. 2021;1:1–14. PubMed PMC
Nasir Uddin MM, Ahmed S, Kabir MSH, Rahman MS, Sultan RA, Emran T, Bin. In vivo analgesic, anti-inflammatory potential in Swiss albino mice and in vitro thrombolytic activity of hydroalcoholic fruits extract from Daemonorops Robusta Warb. J Appl Pharm Sci. 2017;7:104–13.10.7324/JAPS.2017.70114 DOI
Mitra S, Islam F, Das R, Urmee H, Akter A, Idris AM, et al. Pharmacological potential of Avicennia Alba Leaf Extract: an experimental analysis focusing on Antidiabetic, anti-inflammatory, analgesic, and Antidiarrheal Activity. Biomed Res Int. 2022;2022:7624189. 10.1155/2022/7624189 PubMed DOI PMC
Sakib SA, Tareq AM, Islam A, Rakib A, Islam MN, Uddin MA, et al. Anti-inflammatory, thrombolytic and hair-growth promoting activity of the n-Hexane fraction of the methanol extract of Leea indica leaves. Plants. 2021;10:1081. 10.3390/plants10061081 PubMed DOI PMC
Luca G, Baroni T, Arato I, Hansen BC, Cameron DF, Calafiore R. Role of sertoli cell proteins in Immunomodulation. Protein Pept Lett. 2018;25:440–5. 10.2174/0929866525666180412163151 PubMed DOI
Vegrichtova M, Hajkova M, Porubska B, Vasek D, Krylov V, Tlapakova T et al. Xenogeneic sertoli cells modulate immune response in an evolutionary distant mouse model through the production of interleukin-10 and PD-1 ligands expression. Xenotransplantation. 2022;e12742. PubMed
Matsumoto S, Matsumoto K. Clinical islet xenotransplantation: development of isolation Protocol, anti-rejection strategies, and clinical outcomes. Cells. 2024;13:828. 10.3390/cells13100828 PubMed DOI PMC
Yin Z, Chen D, Hu F, Ruan Y, Li J, Wang L, et al. Cotransplantation with xenogenetic neonatal porcine sertoli cells significantly prolongs islet allograft survival in nonimmunosuppressive rats. Transplantation. 2009;88:339–45. 10.1097/TP.0b013e3181ae5dcf PubMed DOI
Lakpour MR, Aghajanpour S, Koruji M, Shahverdi A, Sadighi-Gilani MA, Sabbaghian M, et al. Isolation, culture and characterization of human sertoli cells by Flow Cytometry: Development of Procedure. J Reprod Infertil. 2017;18:213–7. PubMed PMC
Chui K, Trivedi A, Cheng CY, Cherbavaz DB, Dazin PF, Huynh ALT, et al. Characterization and functionality of proliferative human sertoli cells. Cell Transpl. 2011;20:619.10.3727/096368910X536563 PubMed DOI PMC
Bistoni G, Calvitti M, Mancuso F, Arato I, Falabella G, Cucchia R, et al. Prolongation of skin allograft survival in rats by the transplantation of microencapsulated xenogeneic neonatal porcine sertoli cells. Biomaterials. 2012;33:5333–40. 10.1016/j.biomaterials.2012.04.020 PubMed DOI