Intracellular mechanisms of fungal space searching in microenvironments
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
31213536
PubMed Central
PMC6613077
DOI
10.1073/pnas.1816423116
PII: 1816423116
Knihovny.cz E-zdroje
- Klíčová slova
- Spitzenkörper, fungal growth, live-cell imaging, microfluidics, microtubules,
- MeSH
- časosběrné zobrazování MeSH
- hyfy růst a vývoj fyziologie MeSH
- mikrotubuly fyziologie MeSH
- Neurospora crassa růst a vývoj fyziologie MeSH
- optické zobrazování MeSH
- životní prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Filamentous fungi that colonize microenvironments, such as animal or plant tissue or soil, must find optimal paths through their habitat, but the biological basis for negotiating growth in constrained environments is unknown. We used time-lapse live-cell imaging of Neurospora crassa in microfluidic environments to show how constraining geometries determine the intracellular processes responsible for fungal growth. We found that, if a hypha made contact with obstacles at acute angles, the Spitzenkörper (an assembly of vesicles) moved from the center of the apical dome closer to the obstacle, thus functioning as an internal gyroscope, which preserved the information regarding the initial growth direction. Additionally, the off-axis trajectory of the Spitzenkörper was tracked by microtubules exhibiting "cutting corner" patterns. By contrast, if a hypha made contact with an obstacle at near-orthogonal incidence, the directional memory was lost, due to the temporary collapse of the Spitzenkörper-microtubule system, followed by the formation of two "daughter" hyphae growing in opposite directions along the contour of the obstacle. Finally, a hypha passing a lateral opening in constraining channels continued to grow unperturbed, but a daughter hypha gradually branched into the opening and formed its own Spitzenkörper-microtubule system. These observations suggest that the Spitzenkörper-microtubule system is responsible for efficient space partitioning in microenvironments, but, in its absence during constraint-induced apical splitting and lateral branching, the directional memory is lost, and growth is driven solely by the isotropic turgor pressure. These results further our understanding of fungal growth in microenvironments relevant to environmental, industrial, and medical applications.
Department of Bioengineering Faculty of Engineering McGill University Montreal QC H3A 0C3 Canada
School of Biological Sciences University of Liverpool L69 7ZB Liverpool United Kingdom
Zobrazit více v PubMed
Fischer G., Opportunistic filamentous fungi–Species spectrum and abundance in the human environment. Umweltmed. Forsch. Prax. 15, 84–91 (2010).
Fisher M. C., et al. , Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012). PubMed PMC
Baldrian P., Valásková V., Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol. Rev. 32, 501–521 (2008). PubMed
Purahong W., Hyde K. D., Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers. 47, 1–7 (2011).
Fricker M. D., White N. S., Obermeyer G., pH gradients are not associated with tip growth in pollen tubes of Lilium longiflorum. J. Cell Sci. 110, 1729–1740 (1997). PubMed
Brand A., Gow N. A. R., Mechanisms of hypha orientation of fungi. Curr. Opin. Microbiol. 12, 350–357 (2009). PubMed PMC
Molin P., Gervais P., Lemière J. P., Davet T., Direction of hyphal growth: A relevant parameter in the development of filamentous fungi. Res. Microbiol. 143, 777–784 (1992). PubMed
Riquelme M., Reynaga-Peña C. G., Gierz G., Bartnicki-García S., What determines growth direction in fungal hyphae? Fungal Genet. Biol. 24, 101–109 (1998). PubMed
Money N. P., Insights on the mechanics of hyphal growth. Fungal Biol. Rev. 22, 71–76 (2008).
Steinberg G., Hyphal growth: A tale of motors, lipids, and the Spitzenkörper. Eukaryot. Cell 6, 351–360 (2007). PubMed PMC
Wessels J. G. H., Fungi in their own right. Fungal Genet. Biol. 27, 134–145 (1999). PubMed
Prosser J. I., Trinci A. P. J., A model for hyphal growth and branching. J. Gen. Microbiol. 111, 153–164 (1979). PubMed
Trinci A. P. J., A study of the kinetics of hyphal extension and branch initiation of fungal mycelia. J. Gen. Microbiol. 81, 225–236 (1974). PubMed
Harris S. D., Branching of fungal hyphae: Regulation, mechanisms and comparison with other branching systems. Mycologia 100, 823–832 (2008). PubMed
Bottone E. J., Nagarsheth N., Chiu K., Evidence of self-inhibition by filamentous fungi accounts for unidirectional hyphal growth in colonies. Can. J. Microbiol. 44, 390–393 (1998). PubMed
Indermitte C., Liebling M., Clémençon H., Culture analysis and external interaction models of mycelial growth. Bull. Math. Biol. 56, 633–664 (1994). PubMed
Lew R. R., How does a hypha grow? The biophysics of pressurized growth in fungi. Nat. Rev. Microbiol. 9, 509–518 (2011). PubMed
Riquelme M., et al. , Architecture and development of the Neurospora crassa hypha–A model cell for polarized growth. Fungal Biol. 115, 446–474 (2011). PubMed
Bartnicki-Garcia S., Bartnicki D. D., Gierz G., López-Franco R., Bracker C. E., Evidence that Spitzenkörper behavior determines the shape of a fungal hypha: A test of the hyphoid model. Exp. Mycol. 19, 153–159 (1995). PubMed
Bracker C. E., Murphy D. J., Lopez-Franco R., “Laser microbeam manipulation of cell morphogenesis growing in fungal hyphae” in Functional Imaging and Optical Manipulation of Living Cells (SPIE, Bellingham, WA, 1997), pp. 67–80.
Fischer-Parton S., et al. , Confocal microscopy of FM4-64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J. Microsc. 198, 246–259 (2000). PubMed
Girbardt M., Die Ultrastruktur der Apikalregion von Pilzhyphen. Protoplasma 67, 413–441 (1969).
Harris S. D., et al. , Polarisome meets spitzenkörper: Microscopy, genetics, and genomics converge. Eukaryot. Cell 4, 225–229 (2005). PubMed PMC
Verdín J., Bartnicki-Garcia S., Riquelme M., Functional stratification of the Spitzenkörper of Neurospora crassa. Mol. Microbiol. 74, 1044–1053 (2009). PubMed
Uchida M., Mouriño-Pérez R. R., Freitag M., Bartnicki-García S., Roberson R. W., Microtubule dynamics and the role of molecular motors in Neurospora crassa. Fungal Genet. Biol. 45, 683–692 (2008). PubMed
Horio T., Role of microtubules in tip growth of fungi. J. Plant Res. 120, 53–60 (2007). PubMed
Mouriño-Pérez R. R., Roberson R. W., Bartnicki-García S., Microtubule dynamics and organization during hyphal growth and branching in Neurospora crassa. Fungal Genet. Biol. 43, 389–400 (2006). PubMed
Freitag M., Hickey P. C., Raju N. B., Selker E. U., Read N. D., GFP as a tool to analyze the organization, dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet. Biol. 41, 897–910 (2004). PubMed
Hyde G. J., Davies D., Perasso L., Cole L., Ashford A. E., Microtubules, but not actin microfilaments, regulate vacuole motility and morphology in hyphae of Pisolithus tinctorius. Cell Motil. Cytoskeleton 42, 114–124 (1999). PubMed
Cassimeris L., Pryer N. K., Salmon E. D., Real-time observations of microtubule dynamic instability in living cells. J. Cell Biol. 107, 2223–2231 (1988). PubMed PMC
Schultzhaus Z., Quintanilla L., Hilton A., Shaw B. D., Live cell imaging of actin dynamics in the filamentous fungus Aspergillus nidulans. Microsc. Microanal. 22, 264–274 (2016). PubMed
Bergs A., Ishitsuka Y., Evangelinos M., Nienhaus G. U., Takeshita N., Dynamics of actin cables in polarized growth of the filamentous fungus Aspergillus nidulans. Front. Microbiol. 7, 682 (2016). PubMed PMC
Takeshita N., Manck R., Grün N., de Vega S. H., Fischer R., Interdependence of the actin and the microtubule cytoskeleton during fungal growth. Curr. Opin. Microbiol. 20, 34–41 (2014). PubMed
Berepiki A., Lichius A., Read N. D., Actin organization and dynamics in filamentous fungi. Nat. Rev. Microbiol. 9, 876–887 (2011). PubMed
Kopecká M., Kawamoto S., Yamaguchi M., A new F-actin structure in fungi: Actin ring formation around the cell nucleus of Cryptococcus neoformans. Microscopy (Oxf.) 62, 295–301 (2013). PubMed
Walker S. K., Garrill A., Actin microfilaments in fungi. Mycologist 20, 26–31 (2006).
Berepiki A., Lichius A., Shoji J.-Y., Tilsner J., Read N. D., F-actin dynamics in Neurospora crassa. Eukaryot. Cell 9, 547–557 (2010). PubMed PMC
Lichius A., Berepiki A., Read N. D., Form follows function–The versatile fungal cytoskeleton. Fungal Biol. 115, 518–540 (2011). PubMed
Seiler S., Plamann M., The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa. Mol. Biol. Cell 14, 4352–4364 (2003). PubMed PMC
Steinberg G., Schuster M., The dynamic fungal cell. Fungal Biol. Rev. 25, 14–37 (2011).
Money N. P., Wishful thinking of turgor revisited: The mechanics of fungal growth. Fungal Genet. Biol. 21, 173–187 (1997).
Chen L. Y., et al. , The Arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells. Nat. Commun. 6, 6030 (2015). PubMed PMC
Howard R. J., Ferrari M. A., Roach D. H., Money N. P., Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc. Natl. Acad. Sci. U.S.A. 88, 11281–11284 (1991). PubMed PMC
Money N. P., Howard R. J., Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method of turgor measurement. Fungal Genet. Biol. 20, 217–227 (1996).
Ortega J. K. E., Munoz C. M., Blakley S. E., Truong J. T., Ortega E. L., Stiff mutant genes of phycomyces affect turgor pressure and wall mechanical properties to regulate elongation growth rate. Front. Plant Sci. 3, 99 (2012). PubMed PMC
Lew R. R., Levina N. N., Walker S. K., Garrill A., Turgor regulation in hyphal organisms. Fungal Genet. Biol. 41, 1007–1015 (2004). PubMed
Shabala S. N., Lew R. R., Turgor regulation in osmotically stressed Arabidopsis epidermal root cells. Direct support for the role of inorganic ion uptake as revealed by concurrent flux and cell turgor measurements. Plant Physiol. 129, 290–299 (2002). PubMed PMC
Blainey P. C., The future is now: Single-cell genomics of bacteria and archaea. FEMS Microbiol. Rev. 37, 407–427 (2013). PubMed PMC
Hol F. J. H., Dekker C., Zooming in to see the bigger picture: Microfluidic and nanofabrication tools to study bacteria. Science 346, 1251821 (2014). PubMed
Libberton B., Binz M., van Zalinge H., Nicolau D. V., Efficiency of the flagellar propulsion of Escherichia coli in confined microfluidic geometries. Phys. Rev. E 99, 012408 (2019). PubMed
Gupta K., et al. , Lab-on-a-chip devices as an emerging platform for stem cell biology. Lab Chip 10, 2019–2031 (2010). PubMed
Vunjak-Novakovic G., Scadden D. T., Biomimetic platforms for human stem cell research. Cell Stem Cell 8, 252–261 (2011). PubMed PMC
Agudelo C., Packirisamy M., Geitmann A., Influence of electric fields and conductivity on pollen tube growth assessed via electrical lab-on-chip. Sci. Rep. 6, 19812 (2016). PubMed PMC
Agudelo C. G., et al. , TipChip: A modular, MEMS-based platform for experimentation and phenotyping of tip-growing cells. Plant J. 73, 1057–1068 (2013). PubMed
Geng T., et al. , Compartmentalized microchannel array for high-throughput analysis of single cell polarized growth and dynamics. Sci. Rep. 5, 16111 (2015). PubMed PMC
Mirzaei M., et al. , Microfluidic perfusion system for culturing, imaging yeast cell microarrays and rapidly exchanging media. Lab Chip 10, 2449–2457 (2010). PubMed
Tayagui A., Sun Y., Collings D. A., Garrill A., Nock V., An elastomeric micropillar platform for the study of protrusive forces in hyphal invasion. Lab Chip 17, 3643–3653 (2017). PubMed
Xu L., Lee H., Jetta D., Oh K. W., Vacuum-driven power-free microfluidics utilizing the gas solubility or permeability of polydimethylsiloxane (PDMS). Lab Chip 15, 3962–3979 (2015). PubMed
Stanley C. E., Grossmann G., CasadevallI Solvas X., DeMello A. J., Soil-on-a-chip: Microfluidic platforms for environmental organismal studies. Lab Chip 16, 228–241 (2016). PubMed
Hanson K. L., et al. , Fungi use efficient algorithms for the exploration of microfluidic networks. Small 2, 1212–1220 (2006). PubMed
Held M., Edwards C., Nicolau D. V., Probing the growth dynamics of Neurospora crassa with microfluidic structures. Fungal Biol. 115, 493–505 (2011). PubMed
Held M., Lee A. P., Edwards C., Nicolau D. V., Microfluidics structures for probing the dynamic behaviour of filamentous fungi. Microelectron. Eng. 87, 786–789 (2010).
Asenova E., Lin H. Y., Fu E., Nicolau D. V., Nicolau Jr, D. V., Optimal fungal space searching algorithms. IEEE Trans. Nanobioscience 15, 613–618 (2016). PubMed
Bartnicki-Garcia S., Bracker C. E., Gierz G., López-Franco R., Lu H., Mapping the growth of fungal hyphae: Orthogonal cell wall expansion during tip growth and the role of turgor. Biophys. J. 79, 2382–2390 (2000). PubMed PMC
Gierz G., Bartnicki-Garcia S., A three-dimensional model of fungal morphogenesis based on the vesicle supply center concept. J. Theor. Biol. 208, 151–164 (2001). PubMed
Reynaga-Peña C. G., Gierz G., Bartnicki-Garcia S., Analysis of the role of the Spitzenkörper in fungal morphogenesis by computer simulation of apical branching in Aspergillus niger. Proc. Natl. Acad. Sci. U.S.A. 94, 9096–9101 (1997). PubMed PMC
Löpez-Franco R., Bracker C., Diversity and dynamics of the Spitzenkörper in growing hyphal tips of higher fungi. Protoplasma 195, 90–111 (1996).
Pieuchot L., et al. , Cellular subcompartments through cytoplasmic streaming. Dev. Cell 34, 410–420 (2015). PubMed
Held M., Edwards C., Nicolau D. V., “Temporal and spatial in vivo optical analysis of microtubules in Neurospora crassa” in Progress in Biomedical Optics and Imaging–Proceedings of SPIE (SPIE, Bellingham, WA, 2010), 75680V.
Riquelme M., Bartnicki-Garcia S., Key differences between lateral and apical branching in hyphae of Neurospora crassa. Fungal Genet. Biol. 41, 842–851 (2004). PubMed
Walker S. K., Chitcholtan K., Yu Y., Christenhusz G. M., Garrill A., Invasive hyphal growth: An F-actin depleted zone is associated with invasive hyphae of the oomycetes Achlya bisexualis and Phytophthora cinnamomi. Fungal Genet. Biol. 43, 357–365 (2006). PubMed
Suei S., Garrill A., An F-actin-depleted zone is present at the hyphal tip of invasive hyphae of Neurospora crassa. Protoplasma 232, 165–172 (2008). PubMed
Minc N., Boudaoud A., Chang F., Mechanical forces of fission yeast growth. Curr. Biol. 19, 1096–1101 (2009). PubMed PMC
Money N. P., Measurement of hyphal turgor. Exp. Mycol. 14, 416–425 (1990).
Nicolau D. V., et al. , Molecular motors-based micro- and nano-biocomputation devices. Microelectron. Eng. 83, 1582–1588 (2006).
Nicolau D. V. Jr, et al. , Parallel computation with molecular-motor-propelled agents in nanofabricated networks. Proc. Natl. Acad. Sci. U.S.A. 113, 2591–2596 (2016). PubMed PMC
Roper M., Simonin A., Hickey P. C., Leeder A., Glass N. L., Nuclear dynamics in a fungal chimera. Proc. Natl. Acad. Sci. U.S.A. 110, 12875–12880 (2013). PubMed PMC
Heaton L., et al. , Analysis of fungal networks. Fungal Biol. Rev. 26, 12–29 (2012).
Bebber D. P., Hynes J., Darrah P. R., Boddy L., Fricker M. D., Biological solutions to transport network design. Proc. Biol. Sci. 274, 2307–2315 (2007). PubMed PMC
Tero A., et al. , Rules for biologically inspired adaptive network design. Science 327, 439–442 (2010). PubMed