Patterns of bacterial motility in microfluidics-confining environments

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid33875583

Understanding the motility behavior of bacteria in confining microenvironments, in which they search for available physical space and move in response to stimuli, is important for environmental, food industry, and biomedical applications. We studied the motility of five bacterial species with various sizes and flagellar architectures (Vibrio natriegens, Magnetococcus marinus, Pseudomonas putida, Vibrio fischeri, and Escherichia coli) in microfluidic environments presenting various levels of confinement and geometrical complexity, in the absence of external flow and concentration gradients. When the confinement is moderate, such as in quasi-open spaces with only one limiting wall, and in wide channels, the motility behavior of bacteria with complex flagellar architectures approximately follows the hydrodynamics-based predictions developed for simple monotrichous bacteria. Specifically, V. natriegens and V. fischeri moved parallel to the wall and P. putida and E. coli presented a stable movement parallel to the wall but with incidental wall escape events, while M. marinus exhibited frequent flipping between wall accumulator and wall escaper regimes. Conversely, in tighter confining environments, the motility is governed by the steric interactions between bacteria and the surrounding walls. In mesoscale regions, where the impacts of hydrodynamics and steric interactions overlap, these mechanisms can either push bacteria in the same directions in linear channels, leading to smooth bacterial movement, or they could be oppositional (e.g., in mesoscale-sized meandered channels), leading to chaotic movement and subsequent bacterial trapping. The study provides a methodological template for the design of microfluidic devices for single-cell genomic screening, bacterial entrapment for diagnostics, or biocomputation.

Zobrazit více v PubMed

Salyers A. A., Whitt D. D., Bacterial Pathogenesis: A Molecular Approach (ASM Press, Washington, DC, 1994), vol. 3.

Woodford N., Livermore D. M., Infections caused by gram-positive bacteria: A review of the global challenge. J. Infect. 59 (suppl. 1), S4–S16 (2009). PubMed

Nagarkar P. P., Ravetkar S. D., Watve M. G., Oligophilic bacteria as tools to monitor aseptic pharmaceutical production units. Appl. Environ. Microbiol. 67, 1371–1374 (2001). PubMed PMC

Gareau M. G., Sherman P. M., Walker W. A., Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 7, 503–514 (2010). PubMed PMC

Harper T. A., et al. ., Bioaerosol sampling for airborne bacteria in a small animal veterinary teaching hospital. Infect. Ecol. Epidemiol. 3 (2013). PubMed PMC

Kandel S. L., Herschberger N., Kim S. H., Doty S. L., Diazotrophic endophytes of poplar and willow for growth promotion of rice plants in nitrogen-limited conditions. Crop Sci. 55, 1765–1772 (2015).

Asada Y., Miyake J., Photobiological hydrogen production. J. Biosci. Bioeng. 88, 1–6 (1999). PubMed

Esmaeili A., Pourbabaee A. A., Alikhani H. A., Shabani F., Esmaeili E., Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus Niger in soil. PLoS One 8, e71720 (2013). PubMed PMC

Höckenreiner M., Neugebauer H., Elango L., Ex situ bioremediation method for the treatment of groundwater contaminated with PAHs. Int. J. Environ. Sci. Technol. 12, 285–296 (2015).

Reith F., Zammit C. M., Rogers S. L., McPhail D. C., Brugger J., Potential utilisation of micro-organisms in gold processing: A review. Miner. Process. Extr. Metall. 121, 251–260 (2012).

Habimana O., Semião A., Casey E., The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes. J. Membrane Sci. 454, 82–96 (2014).

Verde C., Giordano D., Bellas C. M., di Prisco G., Anesio A. M., “Polar marine microorganisms and climate change” in Advances in Microbial Physiology, Poole R. K., Ed. (Elsevier, 2016), 69, pp. 187–215. PubMed

Wadhams G. H., Armitage J. P., Making sense of it all: Bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5, 1024–1037 (2004). PubMed

Komaromy A. Z., et al. ., Arrays of nano-structured surfaces to probe the adhesion and viability of bacteria. Microelectron. Eng. 91, 39–43 (2012).

Persat A., et al. ., The mechanical world of bacteria. Cell 161, 988–997 (2015). PubMed PMC

Felfoul O., Martel S., Assessment of navigation control strategy for magnetotactic bacteria in microchannel: Toward targeting solid tumors. Biomed. Microdevices 15, 1015–1024 (2013). PubMed

Jarrell K. F., McBride M. J., The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 6, 466–476 (2008). PubMed

Holwill M. E. J., Burge R. E., A hydrodynamic study of the motility of flagellated bacteria. Arch. Biochem. Biophys. 101, 249–260 (1963). PubMed

Bai F., et al. ., Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 327, 685–689 (2010). PubMed

Chevance F. F., Hughes K. T., Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 455–465 (2008). PubMed PMC

Young K. D., Bacterial morphology: Why have different shapes? Curr. Opin. Microbiol. 10, 596–600 (2007). PubMed PMC

Bren A., Eisenbach M., How signals are heard during bacterial chemotaxis: Protein-protein interactions in sensory signal propagation. J. Bacteriol. 182, 6865–6873 (2000). PubMed PMC

Harshey R. M., Bacterial motility on a surface: Many ways to a common goal. Annu. Rev. Microbiol. 57, 249–273 (2003). PubMed

Mitchell J. G., Kogure K., Bacterial motility: Links to the environment and a driving force for microbial physics. FEMS Microbiol. Ecol. 55, 3–16 (2006). PubMed

Denissenko P., Kantsler V., Smith D. J., Kirkman-Brown J., Human spermatozoa migration in microchannels reveals boundary-following navigation. Proc. Natl. Acad. Sci. U.S.A. 109, 8007–8010 (2012). PubMed PMC

Drescher K., Dunkel J., Cisneros L. H., Ganguly S., Goldstein R. E., Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. Proc. Natl. Acad. Sci. U.S.A. 108, 10940–10945 (2011). PubMed PMC

Lemelle L., Palierne J. F., Chatre E., Place C., Counterclockwise circular motion of bacteria swimming at the air-liquid interface. J. Bacteriol. 192, 6307–6308 (2010). PubMed PMC

Berg H. C., Turner L., Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility, microchannel plate, and light scattering. Biophys. J. 58, 919–930 (1990). PubMed PMC

Binz M., Lee A. P., Edwards C., Nicolau D. V., Motility of bacteria in microfluidic structures. Microelectron. Eng. 87, 810–813 (2010).

Libberton B., Binz M., van Zalinge H., Nicolau D. V., Efficiency of the flagellar propulsion of Escherichia coli in confined microfluidic geometries. Phys. Rev. E 99, 012408 (2019). PubMed

Giacché D., Ishikawa T., Yamaguchi T., Hydrodynamic entrapment of bacteria swimming near a solid surface. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82, 056309 (2010). PubMed

Shum H., Gaffney E. A., Smith D. J., Modelling bacterial behaviour close to a no-slip plane boundary: The influence of bacterial geometry. Proc. Royal Soc. Math. Phys. Eng. Sci. 466, 1725–1748 (2010).

Shum H., Gaffney E. A., The effects of flagellar hook compliance on motility of monotrichous bacteria: A modeling study. Phys. Fluids 24, 061901 (2012).

Acemoglu A., Yesilyurt S., Effects of geometric parameters on swimming of micro organisms with single helical flagellum in circular channels. Biophys. J. 106, 1537–1547 (2014). PubMed PMC

Shum H., Gaffney E. A., Hydrodynamic analysis of flagellated bacteria swimming near one and between two no-slip plane boundaries. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91, 033012 (2015). PubMed

Hu J., Wysocki A., Winkler R. G., Gompper G., Physical sensing of surface properties by microswimmers–Directing bacterial motion via wall slip. Sci. Rep. 5, 9586 (2015). PubMed PMC

Park Y., Kim Y., Lim S., Flagellated bacteria swim in circles near a rigid wall. Phys. Rev. E 100, 063112 (2019). PubMed

Lauga E., Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48, 105–130 (2016).

Shum H., Gaffney E. A., Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92, 063016 (2015). PubMed

Sackmann E. K., Fulton A. L., Beebe D. J., The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014). PubMed

Zhang J., et al. ., Fundamentals and applications of inertial microfluidics: A review. Lab Chip 16, 10–34 (2016). PubMed

Erickson D., Li D. Q., Integrated microfluidic devices. Anal. Chim. Acta 507, 11–26 (2004).

Zheng G.-X., et al. ., An integrated microfludic device for culturing and screening of Giardia lamblia. Exp. Parasitol. 137, 1–7 (2014). PubMed

Xu C.-X., Yin X.-F., Continuous cell introduction and rapid dynamic lysis for high-throughput single-cell analysis on microfludic chips with hydrodynamic focusing. J. Chromatogr. A 1218, 726–732 (2011). PubMed

Yuan D., et al. ., Sheathless separation of microalgae from bacteria using a simple straight channel based on viscoelastic microfluidics. Lab Chip 19, 2811–2821 (2019). PubMed

Yeo L. Y., Chang H. C., Chan P. P., Friend J. R., Microfluidic devices for bioapplications. Small 7, 12–48 (2011). PubMed

Kalisky T., Quake S. R., Single-cell genomics. Nat. Methods 8, 311–314 (2011). PubMed

Sheth R. U., Yim S. S., Wu F. L., Wang H. H., Multiplex recording of cellular events over time on CRISPR biological tape. Science 358, 1457–1461 (2017). PubMed PMC

Kim B. J., Wu M., Microfluidics for mammalian cell chemotaxis. Ann. Biomed. Eng. 40, 1316–1327 (2012). PubMed PMC

Hanson K. L., et al. ., Fungi use efficient algorithms for the exploration of microfluidic networks. Small 2, 1212–1220 (2006). PubMed

Held M., Lee A. P., Edwards C., Nicolau D. V., Microfluidics structures for probing the dynamic behaviour of filamentous fungi. Microelectron. Eng. 87, 786–789 (2010).

Wang J., et al. ., Detection of size spectrum of microalgae cells in an integrated underwater microfluidic device. J. Exp. Mar. Biol. Ecol. 473, 129–137 (2015).

Liu Z., Papadopoulos K. D., Unidirectional motility of Escherichia coli in restrictive capillaries. Appl. Environ. Microbiol. 61, 3567–3572 (1995). PubMed PMC

Kijanka G. S., Dimov I. K., Burger R., Ducrée J., Real-time monitoring of cell migration, phagocytosis and cell surface receptor dynamics using a novel, live-cell opto-microfluidic technique. Anal. Chim. Acta 872, 95–99 (2015). PubMed

Nayak M., Perumal A. S., Nicolau D. V., Van Delft F. C. M. J. M., Bacterial motility behaviour in sub-ten micron wide geometries” in 2018 16th IEEE International New Circuits and Systems Conference, R. Izquierdo, A. Miled, Eds. NEWCAS 2018 (Montreal, QC, 2018), pp. 382–384.

Perumal A. S., Nayak M., Tokárová V., Kašpar O., Nicolau D. V., “Space partitioning and maze solving by bacteria” in Proceedings of the lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, A. Compagnoni, W. Casey, Y. Cai, B. Mishra, Eds. (Pittsburgh, PA, 2019), pp. 175–180.

Berke A. P., Turner L., Berg H. C., Lauga E., Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102 (2008). PubMed

Lauga E., DiLuzio W. R., Whitesides G. M., Stone H. A., Swimming in circles: Motion of bacteria near solid boundaries. Biophys. J. 90, 400–412 (2006). PubMed PMC

Ipina E. P., Otte S., Pontier-Bres R., Czerucka D., Peruani F., Bacteria display optimal transport near surfaces. Nat. Phys. 15, 610–615 (2019).

Utada A. S., et al. ., Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nat. Commun. 5, 4913 (2014). PubMed PMC

Shum H., Microswimmer propulsion by two steadily rotating helical flagella. Micromachines (Basel) 10, 65 (2019). PubMed PMC

Bente K., et al. ., High-speed motility originates from cooperatively pushing and pulling flagella bundles in bilophotrichous bacteria. eLife 9, e47551 (2020). PubMed PMC

DiLuzio W. R., et al. ., Escherichia coli swim on the right-hand side. Nature 435, 1271–1274 (2005). PubMed

Theves M., Taktikos J., Zaburdaev V., Stark H., Beta C., Random walk patterns of a soil bacterium in open and confined environments. EPL 109, 28007 (2015).

Shum H., “Simulations and modelling of bacterial flagellar propulsion,” PhD thesis, University of Oxford, Oxford, UK (2011).

Bianchi S., Saglimbeni F., Di Leonardo R., Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria. Phys. Rev. X 7, 011010 (2017).

Frymier P. D., Ford R. M., Berg H. C., Cummings P. T., Three-dimensional tracking of motile bacteria near a solid planar surface. Proc. Natl. Acad. Sci. U.S.A. 92, 6195–6199 (1995). PubMed PMC

Figueroa-Morales N., et al. ., E. coli “super-contaminates” narrow ducts fostered by broad run-time distribution. Sci. Adv. 6, eaay0155 (2020). PubMed PMC

Männik J., Driessen R., Galajda P., Keymer J. E., Dekker C., Bacterial growth and motility in sub-micron constrictions. Proc. Natl. Acad. Sci. U.S.A. 106, 14861–14866 (2009). PubMed PMC

Blainey P. C., The future is now: Single-cell genomics of bacteria and archaea. FEMS Microbiol. Rev. 37, 407–427 (2013). PubMed PMC

Paegel B. M., Joyce G. F., Microfluidic compartmentalized directed evolution. Chem. Biol. 17, 717–724 (2010). PubMed PMC

Galajda P., Keymer J., Chaikin P., Austin R., A wall of funnels concentrates swimming bacteria. J. Bacteriol. 189, 8704–8707 (2007). PubMed PMC

Phan T. V., et al. . Bacterial route finding and collective escape in mazes and fractals. Phys. Rev. X 10, 031017 (2020).

Balagaddé F. K., You L., Hansen C. L., Arnold F. H., Quake S. R., Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309, 137–140 (2005). PubMed

Massalha H., Korenblum E., Malitsky S., Shapiro O. H., Aharoni A., Live imaging of root-bacteria interactions in a microfluidics setup. Proc. Natl. Acad. Sci. U.S.A. 114, 4549–4554 (2017). PubMed PMC

Held M., Kašpar O., Edwards C., Nicolau D. V., Intracellular mechanisms of fungal space searching in microenvironments. Proc. Natl. Acad. Sci. U.S.A. 116, 13543–13552 (2019). PubMed PMC

Potvin-Trottier L., Luro S., Paulsson J., Microfluidics and single-cell microscopy to study stochastic processes in bacteria. Curr. Opin. Microbiol. 43, 186–192 (2018). PubMed PMC

Martel S., Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents: A perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks. Biomicrofluidics 10, 021301 (2016). PubMed PMC

Martel S., Tremblay C. C., Ngakeng S., Langlois G., Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl. Phys. Lett. 89, 233904(2006).

Terashima H., Kojima S., Homma M., Flagellar motility in bacteria structure and function of flagellar motor. Int. Rev. Cell Mol. Biol. 270, 39–85 (2008). PubMed

Akin D., et al. ., Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat. Nanotechnol. 2, 441–449 (2007). PubMed

Martel S., Bacterial microsystems and microrobots. Biomed. Microdevices 14, 1033–1045 (2012). PubMed

Tracy B. P., Gaida S. M., Papoutsakis E. T., Flow cytometry for bacteria: Enabling metabolic engineering, synthetic biology and the elucidation of complex phenotypes. Curr. Opin. Biotechnol. 21, 85–99 (2010). PubMed

Huh D., Gu W., Kamotani Y., Grotberg J. B., Takayama S., Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas. 26, R73–R98 (2005). PubMed

Oakey J., et al. ., Particle focusing in staged inertial microfluidic devices for flow cytometry. Anal. Chem. 82, 3862–3867 (2010). PubMed PMC

Wang X., Atencia J., Ford R. M., Quantitative analysis of chemotaxis towards toluene by Pseudomonas putida in a convection-free microfluidic device. Biotechnol. Bioeng. 112, 896–904 (2015). PubMed

Crooks J. A., Stilwell M. D., Oliver P. M., Zhong Z., Weibel D. B., Decoding the chemical language of motile bacteria by using high-throughput microfluidic assays. ChemBioChem 16, 2151–2155 (2015). PubMed PMC

Jeong H. H., et al. ., Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient. Biosens. Bioelectron. 26, 351–356 (2010). PubMed

Kim H., Ali J., Phuyal K., Park S., Kim M. J., Investigation of bacterial chemotaxis using a simple three-point microfluidic system. Biochip J. 9, 50–58 (2015).

Sipos O., Nagy K., Galajda P., Patterns of collective bacterial motion in microfluidic devices. Chem. Biochem. Eng. Q. 28, 233–240 (2014).

Kaehr B., Shear J. B., High-throughput design of microfluidics based on directed bacterial motility. Lab Chip 9, 2632–2637 (2009). PubMed

Park S., Kim D., Mitchell R. J., Kim T., A microfluidic concentrator array for quantitative predation assays of predatory microbes. Lab Chip 11, 2916–2923 (2011). PubMed

Wu Z., Willing B., Bjerketorp J., Jansson J. K., Hjort K., Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 9, 1193–1199 (2009). PubMed

Chiu D. T., Pezzoli E., Wu H., Stroock A. D., Whitesides G. M., Using three-dimensional microfluidic networks for solving computationally hard problems. Proc. Natl. Acad. Sci. U.S.A. 98, 2961–2966 (2001). PubMed PMC

Nicolau D. V. Jr, et al. ., Parallel computation with molecular-motor-propelled agents in nanofabricated networks. Proc. Natl. Acad. Sci. U.S.A. 113, 2591–2596 (2016). PubMed PMC

Nicolau D. V., et al. ., Molecular motors-based micro- and nano-biocomputation devices. Microelectron. Eng. 83, 1582–1588 (2006).

van Delft F. C. M. J. M., et al. ., Something has to give: Scaling combinatorial computing by biological agents exploring physical networks encoding NP-complete problems. Interface Focus 8, 20180034 (2018). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...