Patterns of bacterial motility in microfluidics-confining environments
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
33875583
PubMed Central
PMC8092623
DOI
10.1073/pnas.2013925118
PII: 2013925118
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial motility, microfluidic devices, space partitioning, wall accumulator, wall escaper,
- MeSH
- Alphaproteobacteria fyziologie MeSH
- Bacteria růst a vývoj MeSH
- biofilmy MeSH
- biologické modely MeSH
- Escherichia coli fyziologie MeSH
- flagella fyziologie MeSH
- fyziologie bakterií genetika MeSH
- hydrodynamika MeSH
- mikrofluidika metody MeSH
- pohyb fyziologie MeSH
- Pseudomonas putida fyziologie MeSH
- Vibrio fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Understanding the motility behavior of bacteria in confining microenvironments, in which they search for available physical space and move in response to stimuli, is important for environmental, food industry, and biomedical applications. We studied the motility of five bacterial species with various sizes and flagellar architectures (Vibrio natriegens, Magnetococcus marinus, Pseudomonas putida, Vibrio fischeri, and Escherichia coli) in microfluidic environments presenting various levels of confinement and geometrical complexity, in the absence of external flow and concentration gradients. When the confinement is moderate, such as in quasi-open spaces with only one limiting wall, and in wide channels, the motility behavior of bacteria with complex flagellar architectures approximately follows the hydrodynamics-based predictions developed for simple monotrichous bacteria. Specifically, V. natriegens and V. fischeri moved parallel to the wall and P. putida and E. coli presented a stable movement parallel to the wall but with incidental wall escape events, while M. marinus exhibited frequent flipping between wall accumulator and wall escaper regimes. Conversely, in tighter confining environments, the motility is governed by the steric interactions between bacteria and the surrounding walls. In mesoscale regions, where the impacts of hydrodynamics and steric interactions overlap, these mechanisms can either push bacteria in the same directions in linear channels, leading to smooth bacterial movement, or they could be oppositional (e.g., in mesoscale-sized meandered channels), leading to chaotic movement and subsequent bacterial trapping. The study provides a methodological template for the design of microfluidic devices for single-cell genomic screening, bacterial entrapment for diagnostics, or biocomputation.
Department of Applied Mathematics University of Waterloo Waterloo ON N2L 3G1 Canada
Department of Computer Engineering École Polytechnique de Montréal Montreal QC H3T 1J4 Canada
Faculty of Engineering Department of Bioengineering McGill University Montreal QC H3A 0C3 Canada
Faculty of Engineering Department of Bioengineering McGill University Montreal QC H3A 0C3 Canada;
School of Mathematical Sciences Queensland University of Technology Brisbane QLD 4000 Australia
Zobrazit více v PubMed
Salyers A. A., Whitt D. D., Bacterial Pathogenesis: A Molecular Approach (ASM Press, Washington, DC, 1994), vol. 3.
Woodford N., Livermore D. M., Infections caused by gram-positive bacteria: A review of the global challenge. J. Infect. 59 (suppl. 1), S4–S16 (2009). PubMed
Nagarkar P. P., Ravetkar S. D., Watve M. G., Oligophilic bacteria as tools to monitor aseptic pharmaceutical production units. Appl. Environ. Microbiol. 67, 1371–1374 (2001). PubMed PMC
Gareau M. G., Sherman P. M., Walker W. A., Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 7, 503–514 (2010). PubMed PMC
Harper T. A., et al. ., Bioaerosol sampling for airborne bacteria in a small animal veterinary teaching hospital. Infect. Ecol. Epidemiol. 3 (2013). PubMed PMC
Kandel S. L., Herschberger N., Kim S. H., Doty S. L., Diazotrophic endophytes of poplar and willow for growth promotion of rice plants in nitrogen-limited conditions. Crop Sci. 55, 1765–1772 (2015).
Asada Y., Miyake J., Photobiological hydrogen production. J. Biosci. Bioeng. 88, 1–6 (1999). PubMed
Esmaeili A., Pourbabaee A. A., Alikhani H. A., Shabani F., Esmaeili E., Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus Niger in soil. PLoS One 8, e71720 (2013). PubMed PMC
Höckenreiner M., Neugebauer H., Elango L., Ex situ bioremediation method for the treatment of groundwater contaminated with PAHs. Int. J. Environ. Sci. Technol. 12, 285–296 (2015).
Reith F., Zammit C. M., Rogers S. L., McPhail D. C., Brugger J., Potential utilisation of micro-organisms in gold processing: A review. Miner. Process. Extr. Metall. 121, 251–260 (2012).
Habimana O., Semião A., Casey E., The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes. J. Membrane Sci. 454, 82–96 (2014).
Verde C., Giordano D., Bellas C. M., di Prisco G., Anesio A. M., “Polar marine microorganisms and climate change” in Advances in Microbial Physiology, Poole R. K., Ed. (Elsevier, 2016), 69, pp. 187–215. PubMed
Wadhams G. H., Armitage J. P., Making sense of it all: Bacterial chemotaxis. Nat. Rev. Mol. Cell Biol. 5, 1024–1037 (2004). PubMed
Komaromy A. Z., et al. ., Arrays of nano-structured surfaces to probe the adhesion and viability of bacteria. Microelectron. Eng. 91, 39–43 (2012).
Persat A., et al. ., The mechanical world of bacteria. Cell 161, 988–997 (2015). PubMed PMC
Felfoul O., Martel S., Assessment of navigation control strategy for magnetotactic bacteria in microchannel: Toward targeting solid tumors. Biomed. Microdevices 15, 1015–1024 (2013). PubMed
Jarrell K. F., McBride M. J., The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 6, 466–476 (2008). PubMed
Holwill M. E. J., Burge R. E., A hydrodynamic study of the motility of flagellated bacteria. Arch. Biochem. Biophys. 101, 249–260 (1963). PubMed
Bai F., et al. ., Conformational spread as a mechanism for cooperativity in the bacterial flagellar switch. Science 327, 685–689 (2010). PubMed
Chevance F. F., Hughes K. T., Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 455–465 (2008). PubMed PMC
Young K. D., Bacterial morphology: Why have different shapes? Curr. Opin. Microbiol. 10, 596–600 (2007). PubMed PMC
Bren A., Eisenbach M., How signals are heard during bacterial chemotaxis: Protein-protein interactions in sensory signal propagation. J. Bacteriol. 182, 6865–6873 (2000). PubMed PMC
Harshey R. M., Bacterial motility on a surface: Many ways to a common goal. Annu. Rev. Microbiol. 57, 249–273 (2003). PubMed
Mitchell J. G., Kogure K., Bacterial motility: Links to the environment and a driving force for microbial physics. FEMS Microbiol. Ecol. 55, 3–16 (2006). PubMed
Denissenko P., Kantsler V., Smith D. J., Kirkman-Brown J., Human spermatozoa migration in microchannels reveals boundary-following navigation. Proc. Natl. Acad. Sci. U.S.A. 109, 8007–8010 (2012). PubMed PMC
Drescher K., Dunkel J., Cisneros L. H., Ganguly S., Goldstein R. E., Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. Proc. Natl. Acad. Sci. U.S.A. 108, 10940–10945 (2011). PubMed PMC
Lemelle L., Palierne J. F., Chatre E., Place C., Counterclockwise circular motion of bacteria swimming at the air-liquid interface. J. Bacteriol. 192, 6307–6308 (2010). PubMed PMC
Berg H. C., Turner L., Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility, microchannel plate, and light scattering. Biophys. J. 58, 919–930 (1990). PubMed PMC
Binz M., Lee A. P., Edwards C., Nicolau D. V., Motility of bacteria in microfluidic structures. Microelectron. Eng. 87, 810–813 (2010).
Libberton B., Binz M., van Zalinge H., Nicolau D. V., Efficiency of the flagellar propulsion of Escherichia coli in confined microfluidic geometries. Phys. Rev. E 99, 012408 (2019). PubMed
Giacché D., Ishikawa T., Yamaguchi T., Hydrodynamic entrapment of bacteria swimming near a solid surface. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 82, 056309 (2010). PubMed
Shum H., Gaffney E. A., Smith D. J., Modelling bacterial behaviour close to a no-slip plane boundary: The influence of bacterial geometry. Proc. Royal Soc. Math. Phys. Eng. Sci. 466, 1725–1748 (2010).
Shum H., Gaffney E. A., The effects of flagellar hook compliance on motility of monotrichous bacteria: A modeling study. Phys. Fluids 24, 061901 (2012).
Acemoglu A., Yesilyurt S., Effects of geometric parameters on swimming of micro organisms with single helical flagellum in circular channels. Biophys. J. 106, 1537–1547 (2014). PubMed PMC
Shum H., Gaffney E. A., Hydrodynamic analysis of flagellated bacteria swimming near one and between two no-slip plane boundaries. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 91, 033012 (2015). PubMed
Hu J., Wysocki A., Winkler R. G., Gompper G., Physical sensing of surface properties by microswimmers–Directing bacterial motion via wall slip. Sci. Rep. 5, 9586 (2015). PubMed PMC
Park Y., Kim Y., Lim S., Flagellated bacteria swim in circles near a rigid wall. Phys. Rev. E 100, 063112 (2019). PubMed
Lauga E., Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48, 105–130 (2016).
Shum H., Gaffney E. A., Hydrodynamic analysis of flagellated bacteria swimming in corners of rectangular channels. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 92, 063016 (2015). PubMed
Sackmann E. K., Fulton A. L., Beebe D. J., The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014). PubMed
Zhang J., et al. ., Fundamentals and applications of inertial microfluidics: A review. Lab Chip 16, 10–34 (2016). PubMed
Erickson D., Li D. Q., Integrated microfluidic devices. Anal. Chim. Acta 507, 11–26 (2004).
Zheng G.-X., et al. ., An integrated microfludic device for culturing and screening of Giardia lamblia. Exp. Parasitol. 137, 1–7 (2014). PubMed
Xu C.-X., Yin X.-F., Continuous cell introduction and rapid dynamic lysis for high-throughput single-cell analysis on microfludic chips with hydrodynamic focusing. J. Chromatogr. A 1218, 726–732 (2011). PubMed
Yuan D., et al. ., Sheathless separation of microalgae from bacteria using a simple straight channel based on viscoelastic microfluidics. Lab Chip 19, 2811–2821 (2019). PubMed
Yeo L. Y., Chang H. C., Chan P. P., Friend J. R., Microfluidic devices for bioapplications. Small 7, 12–48 (2011). PubMed
Kalisky T., Quake S. R., Single-cell genomics. Nat. Methods 8, 311–314 (2011). PubMed
Sheth R. U., Yim S. S., Wu F. L., Wang H. H., Multiplex recording of cellular events over time on CRISPR biological tape. Science 358, 1457–1461 (2017). PubMed PMC
Kim B. J., Wu M., Microfluidics for mammalian cell chemotaxis. Ann. Biomed. Eng. 40, 1316–1327 (2012). PubMed PMC
Hanson K. L., et al. ., Fungi use efficient algorithms for the exploration of microfluidic networks. Small 2, 1212–1220 (2006). PubMed
Held M., Lee A. P., Edwards C., Nicolau D. V., Microfluidics structures for probing the dynamic behaviour of filamentous fungi. Microelectron. Eng. 87, 786–789 (2010).
Wang J., et al. ., Detection of size spectrum of microalgae cells in an integrated underwater microfluidic device. J. Exp. Mar. Biol. Ecol. 473, 129–137 (2015).
Liu Z., Papadopoulos K. D., Unidirectional motility of Escherichia coli in restrictive capillaries. Appl. Environ. Microbiol. 61, 3567–3572 (1995). PubMed PMC
Kijanka G. S., Dimov I. K., Burger R., Ducrée J., Real-time monitoring of cell migration, phagocytosis and cell surface receptor dynamics using a novel, live-cell opto-microfluidic technique. Anal. Chim. Acta 872, 95–99 (2015). PubMed
Nayak M., Perumal A. S., Nicolau D. V., Van Delft F. C. M. J. M., Bacterial motility behaviour in sub-ten micron wide geometries” in 2018 16th IEEE International New Circuits and Systems Conference, R. Izquierdo, A. Miled, Eds. NEWCAS 2018 (Montreal, QC, 2018), pp. 382–384.
Perumal A. S., Nayak M., Tokárová V., Kašpar O., Nicolau D. V., “Space partitioning and maze solving by bacteria” in Proceedings of the lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, A. Compagnoni, W. Casey, Y. Cai, B. Mishra, Eds. (Pittsburgh, PA, 2019), pp. 175–180.
Berke A. P., Turner L., Berg H. C., Lauga E., Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101, 038102 (2008). PubMed
Lauga E., DiLuzio W. R., Whitesides G. M., Stone H. A., Swimming in circles: Motion of bacteria near solid boundaries. Biophys. J. 90, 400–412 (2006). PubMed PMC
Ipina E. P., Otte S., Pontier-Bres R., Czerucka D., Peruani F., Bacteria display optimal transport near surfaces. Nat. Phys. 15, 610–615 (2019).
Utada A. S., et al. ., Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nat. Commun. 5, 4913 (2014). PubMed PMC
Shum H., Microswimmer propulsion by two steadily rotating helical flagella. Micromachines (Basel) 10, 65 (2019). PubMed PMC
Bente K., et al. ., High-speed motility originates from cooperatively pushing and pulling flagella bundles in bilophotrichous bacteria. eLife 9, e47551 (2020). PubMed PMC
DiLuzio W. R., et al. ., Escherichia coli swim on the right-hand side. Nature 435, 1271–1274 (2005). PubMed
Theves M., Taktikos J., Zaburdaev V., Stark H., Beta C., Random walk patterns of a soil bacterium in open and confined environments. EPL 109, 28007 (2015).
Shum H., “Simulations and modelling of bacterial flagellar propulsion,” PhD thesis, University of Oxford, Oxford, UK (2011).
Bianchi S., Saglimbeni F., Di Leonardo R., Holographic imaging reveals the mechanism of wall entrapment in swimming bacteria. Phys. Rev. X 7, 011010 (2017).
Frymier P. D., Ford R. M., Berg H. C., Cummings P. T., Three-dimensional tracking of motile bacteria near a solid planar surface. Proc. Natl. Acad. Sci. U.S.A. 92, 6195–6199 (1995). PubMed PMC
Figueroa-Morales N., et al. ., E. coli “super-contaminates” narrow ducts fostered by broad run-time distribution. Sci. Adv. 6, eaay0155 (2020). PubMed PMC
Männik J., Driessen R., Galajda P., Keymer J. E., Dekker C., Bacterial growth and motility in sub-micron constrictions. Proc. Natl. Acad. Sci. U.S.A. 106, 14861–14866 (2009). PubMed PMC
Blainey P. C., The future is now: Single-cell genomics of bacteria and archaea. FEMS Microbiol. Rev. 37, 407–427 (2013). PubMed PMC
Paegel B. M., Joyce G. F., Microfluidic compartmentalized directed evolution. Chem. Biol. 17, 717–724 (2010). PubMed PMC
Galajda P., Keymer J., Chaikin P., Austin R., A wall of funnels concentrates swimming bacteria. J. Bacteriol. 189, 8704–8707 (2007). PubMed PMC
Phan T. V., et al. . Bacterial route finding and collective escape in mazes and fractals. Phys. Rev. X 10, 031017 (2020).
Balagaddé F. K., You L., Hansen C. L., Arnold F. H., Quake S. R., Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309, 137–140 (2005). PubMed
Massalha H., Korenblum E., Malitsky S., Shapiro O. H., Aharoni A., Live imaging of root-bacteria interactions in a microfluidics setup. Proc. Natl. Acad. Sci. U.S.A. 114, 4549–4554 (2017). PubMed PMC
Held M., Kašpar O., Edwards C., Nicolau D. V., Intracellular mechanisms of fungal space searching in microenvironments. Proc. Natl. Acad. Sci. U.S.A. 116, 13543–13552 (2019). PubMed PMC
Potvin-Trottier L., Luro S., Paulsson J., Microfluidics and single-cell microscopy to study stochastic processes in bacteria. Curr. Opin. Microbiol. 43, 186–192 (2018). PubMed PMC
Martel S., Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents: A perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks. Biomicrofluidics 10, 021301 (2016). PubMed PMC
Martel S., Tremblay C. C., Ngakeng S., Langlois G., Controlled manipulation and actuation of micro-objects with magnetotactic bacteria. Appl. Phys. Lett. 89, 233904(2006).
Terashima H., Kojima S., Homma M., Flagellar motility in bacteria structure and function of flagellar motor. Int. Rev. Cell Mol. Biol. 270, 39–85 (2008). PubMed
Akin D., et al. ., Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat. Nanotechnol. 2, 441–449 (2007). PubMed
Martel S., Bacterial microsystems and microrobots. Biomed. Microdevices 14, 1033–1045 (2012). PubMed
Tracy B. P., Gaida S. M., Papoutsakis E. T., Flow cytometry for bacteria: Enabling metabolic engineering, synthetic biology and the elucidation of complex phenotypes. Curr. Opin. Biotechnol. 21, 85–99 (2010). PubMed
Huh D., Gu W., Kamotani Y., Grotberg J. B., Takayama S., Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas. 26, R73–R98 (2005). PubMed
Oakey J., et al. ., Particle focusing in staged inertial microfluidic devices for flow cytometry. Anal. Chem. 82, 3862–3867 (2010). PubMed PMC
Wang X., Atencia J., Ford R. M., Quantitative analysis of chemotaxis towards toluene by Pseudomonas putida in a convection-free microfluidic device. Biotechnol. Bioeng. 112, 896–904 (2015). PubMed
Crooks J. A., Stilwell M. D., Oliver P. M., Zhong Z., Weibel D. B., Decoding the chemical language of motile bacteria by using high-throughput microfluidic assays. ChemBioChem 16, 2151–2155 (2015). PubMed PMC
Jeong H. H., et al. ., Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient. Biosens. Bioelectron. 26, 351–356 (2010). PubMed
Kim H., Ali J., Phuyal K., Park S., Kim M. J., Investigation of bacterial chemotaxis using a simple three-point microfluidic system. Biochip J. 9, 50–58 (2015).
Sipos O., Nagy K., Galajda P., Patterns of collective bacterial motion in microfluidic devices. Chem. Biochem. Eng. Q. 28, 233–240 (2014).
Kaehr B., Shear J. B., High-throughput design of microfluidics based on directed bacterial motility. Lab Chip 9, 2632–2637 (2009). PubMed
Park S., Kim D., Mitchell R. J., Kim T., A microfluidic concentrator array for quantitative predation assays of predatory microbes. Lab Chip 11, 2916–2923 (2011). PubMed
Wu Z., Willing B., Bjerketorp J., Jansson J. K., Hjort K., Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 9, 1193–1199 (2009). PubMed
Chiu D. T., Pezzoli E., Wu H., Stroock A. D., Whitesides G. M., Using three-dimensional microfluidic networks for solving computationally hard problems. Proc. Natl. Acad. Sci. U.S.A. 98, 2961–2966 (2001). PubMed PMC
Nicolau D. V. Jr, et al. ., Parallel computation with molecular-motor-propelled agents in nanofabricated networks. Proc. Natl. Acad. Sci. U.S.A. 113, 2591–2596 (2016). PubMed PMC
Nicolau D. V., et al. ., Molecular motors-based micro- and nano-biocomputation devices. Microelectron. Eng. 83, 1582–1588 (2006).
van Delft F. C. M. J. M., et al. ., Something has to give: Scaling combinatorial computing by biological agents exploring physical networks encoding NP-complete problems. Interface Focus 8, 20180034 (2018). PubMed PMC