Investigation of the Binding Affinity of a Broad Array of l-Fucosides with Six Fucose-Specific Lectins of Bacterial and Fungal Origin

. 2019 Jun 18 ; 24 (12) : . [epub] 20190618

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31216664

Grantová podpora
K119509 National Research and Development and Innovation Office of Hungary
TÉT_15_IN-1-2016-0071 National Research and Development and Innovation Office of Hungary
GINOP-2.3.2-15-2016-00008 EU and the European Regional Development Fund
János Bolyai Fellowship Hungarian Academy of Sciences
New National Excellence Program, ÚNKP-18-4, Bolyai + Ministry of Human Capacities
15-17572S Czech Science Foundation
CIISB research infrastructure LM2015043 Ministry of Education, Youth and Sports

Series of multivalent α-l-fucoside containing glycoclusters and variously decorated l-fucosides were synthesized to find potential inhibitors of fucose-specific lectins and study the structure-binding affinity relationships. Tri- and tetravalent fucoclusters were built using copper-mediated azide-alkyne click chemistry. Series of fucoside monomers and dimers were synthesized using various methods, namely glycosylation, an azide-alkyne click reaction, photoinduced thiol-en addition, and sulfation. The interactions between compounds with six fucolectins of bacterial or fungal origin were tested using a hemagglutination inhibition assay. As a result, a tetravalent, α-l-fucose presenting glycocluster showed to be a ligand that was orders of magnitude better than a simple monosaccharide for tested lectins in most cases, which can nominate it as a universal ligand for studied lectins. This compound was also able to inhibit the adhesion of Pseudomonas aeruginosa cells to human epithelial bronchial cells. A trivalent fucocluster with a protected amine functional group also seems to be a promising candidate for designing glycoconjugates and chimeras.

Zobrazit více v PubMed

Gibson R.L., Burns J.L., Ramsey B.W. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2003;168:918–951. doi: 10.1164/rccm.200304-505SO. PubMed DOI

Scanlin T.F., Glick M.C. Terminal glycosylation in cystic fibrosis. Biochim. Biophys. Acta. 1999;1455:241–253. doi: 10.1016/S0925-4439(99)00059-9. PubMed DOI

Sharon N., Lis H. Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 1998;98:637–674. doi: 10.1021/cr940413g. PubMed DOI

Imberty A., Wimmerová M., Mitchell E.P., Gilboa-Garber N. Structures of the lectins from Pseudomonas aeruginosa: Insight into the molecular basis for host glycan recognition. Microbes Infect. 2004;6:221–228. doi: 10.1016/j.micinf.2003.10.016. PubMed DOI

Chemani C., Imberty A., de Bentzmann S., Pierre M., Wimmerová M., Guery B.P., Faure K. Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect. Immun. 2009;77:2065–2075. doi: 10.1128/IAI.01204-08. PubMed DOI PMC

Šulák O., Cioci G., Lameignère E., Balloy V., Round A., Gutsche I., Malinovská L., Chignard M., Kosma P., Aubert D.F., et al. Burkholderia cenocepacia BC2L-C is a super lectin with dual specificity and proinflammatory activity. PLoS Pathog. 2011;7 doi: 10.1371/journal.ppat.1002238. PubMed DOI PMC

Houser J., Komarek J., Kostlanova N., Cioci G., Varrot A., Kerr S.C., Lahmann M., Balloy V., Fahy J.V., Chignard M., et al. A soluble fucose-specific lectin from Aspergillus fumigatus conidia-structure, specificity and possible role in fungal pathogenicity. PLoS ONE. 2013;8:1–15. doi: 10.1371/journal.pone.0083077. PubMed DOI PMC

Mitchell E.P., Sabin C., Šnajdrová L., Pokorná M., Perret S., Gautier C., Hofr C., Gilboa-Garber N., Koča J., Wimmerová M., et al. High affinity fucose binding of Pseudomonas aeruginosa lectin PA-IIL: 1.0 A resolution crystal structure of the complex combined with thermodynamics and computational chemistry approaches. Proteins. 2005;58:735–746. doi: 10.1002/prot.20330. PubMed DOI

Houser J., Komarek J., Cioci G., Varrot A., Imberty A., Wimmerova M. Structural insights into Aspergillus fumigatus lectin specificity: AFL binding sites are functionally non-equivalent. Acta Cryst. 2015;D71:442–453. doi: 10.1107/S1399004714026595. PubMed DOI

Yamaki K., Yoshino S. Aspergillus oryzae lectin induces anaphylactoid oedema and mast cell activation through its interaction with fucose of mast cell–bound non-specific IgE. Scand. J. Immun. 2011;74:445–453. doi: 10.1111/j.1365-3083.2011.02598.x. PubMed DOI

Wimmerova M., Mitchell E., Sanchez J.F., Gautier C., Imberty A. Crystal structure of fungal lectin: Six-bladed beta-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin. J. Biol. Chem. 2003;278:27059–27067. doi: 10.1074/jbc.M302642200. PubMed DOI

Denny T.P. Ralstonia solanacearum—A plant pathogen in touch with its host. Trends Microbiol. 2000;8:486–489. doi: 10.1016/S0966-842X(00)01860-6. PubMed DOI

Kostlánová N., Mitchell E.P., Lortat-Jacob H., Oscarson S., Lahmann M., Gilboa-Garber N., Chambat G., Wimmerová M., Imberty A. The fucose-binding lectin from Ralstonia solanacearum. A new type of beta-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan. J. Biol. Chem. 2005;280:27839–27849. doi: 10.1074/jbc.M505184200. PubMed DOI

Cecioni S., Imberty A., Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem. Rev. 2015;115:525–561. doi: 10.1021/cr500303t. PubMed DOI

Goyard D., Baldoneschi V., Varrot A., Fiore M., Imberty A., Richichi B., Renaudet O., Nativi C. Multivalent Glycomimetics with Affinity and Selectivity toward Fucose-Binding Receptors from Emerging Pathogens. Bioconjug. Chem. 2018;29:83–88. doi: 10.1021/acs.bioconjchem.7b00616. PubMed DOI

Lehot V., Brissonnet Y., Dussouy C., Brument S., Cabanettes A., Gillon E., Deniaud D., Varrot A., Le Pape P., Gouin S.G. Multivalent fucosides with nanomolar affinity for the aspergillus fumigatus lectin flea prevent spore adhesion to pneumocytes. Chemistry. 2018;24:19243–19249. doi: 10.1002/chem.201803602. PubMed DOI

Kašaková M., Malinovská L., Klejch T., Hlaváčková M., Dvořáková H., Fujdiarová E., Rottnerová Z., Maťátková O., Lhoták P., Wimmerová M., et al. Selectivity of original C-Hexopyranosyl Calix[4]arene conjugates towards lectins of different origin. Carbohydr. Res. 2018;469:60–72. doi: 10.1016/j.carres.2018.08.012. PubMed DOI

Sommer R., Wagner S., Rox K., Varrot A., Hauck D., Wamhoff E.C., Schreiber J., Ryckmans T., Brunner T., Rademacher C., et al. Glycomimetic, orally bioavailable lecb inhibitors block biofilm formation of Pseudomonas aeruginosa. J. Am. Chem. Soc. 2018;140:2537–2545. doi: 10.1021/jacs.7b11133. PubMed DOI

Hauck D., Joachim I., Frommeyer B., Varrot A., Philipp B., Möller H.M., Imberty A., Exner T.E., Titz A. Discovery of two classes of potent glycomimetic inhibitors of pseudomonas aeruginosa lecb with distinct binding modes. ACS Chem. Biol. 2013;8:1775–1784. doi: 10.1021/cb400371r. PubMed DOI

Buffet K., Gillon E., Holler M., Nierengarten J.F., Imberty A., Vincent S.P. Fucofullerenes as tight ligands of RSL and LecB, two bacterial lectins. Org. Biomol. Chem. 2015;13:6482. doi: 10.1039/C5OB00689A. PubMed DOI

Reymond J.L., Bergmann M., Darbre T. Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Chem. Soc. Rev. 2013;42:4814. doi: 10.1039/c3cs35504g. PubMed DOI

Galanos N., Gillon E., Imberty A., Matthews S.E., Vidal S. Pentavalent pillar[5]arene-based glycoclusters and their multivalent binding to pathogenic bacterial lectins. Org. Biomol. Chem. 2016;14:3476. doi: 10.1039/C6OB00220J. PubMed DOI

Donnier-Maréchal M., Galanos N., Grandjean T., Pascal Y., Ji D., Dong L., Gillon E., He X., Imberty A., Kipnis E., et al. Perylenediimide-based glycoclusters as high affinity ligands of bacterial lectins: Synthesis, binding studies and anti-adhesive properties. Org. Biomol. Chem. 2017;15:10037. doi: 10.1039/C7OB02749D. PubMed DOI

Hua Y., Beshr G., Garvey C.J., Tabor R.F., Titz A., Wilkinson B.L. Photoswitchable Janus glycodendrimer micelles as multivalent inhibitors of LecA and LecB from Pseudomonas aeruginosa. Colloids Surf. B Biointerfaces. 2017;159:605–612. doi: 10.1016/j.colsurfb.2017.08.016. PubMed DOI

Adamová L., Malinovská L., Wimmerová M. New sensitive detection method for lectin hemagglutination using microscopy. Microsc. Res. Tech. 2014;77:841–849. doi: 10.1002/jemt.22407. PubMed DOI

Jančaříková G., Herczeg M., Fujdiarová E., Houser J., Kövér K.E., Borbás A., Wimmerová M., Csávás M. Synthesis of α-L-fucopyranoside-presenting glycoclusters and investigation of their interaction with recombinant Photorhabdus asymbiotica lectin (PHL) Chem. Eur. J. 2018;24:4055–4068. doi: 10.1002/chem.201705853. PubMed DOI

Herczeg M., Mező E., Molnár N., Ng S.-K., Lee Y.-C., Dah-Tsyr Chang M., Borbás A. Inhibitory effect of multivalent rhamnobiosides on recombinant horseshoe crab plasma lectin interactions with Pseudomonas aeruginosa PAO1. Chem. Asian J. 2016;11:3398–3413. doi: 10.1002/asia.201601162. PubMed DOI

Chabre Y.M., Contino-Pepin C., Placide V., Shiao T.C., Roy R. Expeditive synthesis of glycodendrimer scaffolds based on versatile TRIS and mannoside derivatives. J. Org. Chem. 2008;73:5602–5605. doi: 10.1021/jo8008935. PubMed DOI

Leaver D.J., Dawson R.M., White J.M., Polyzos A., Hughes A.B. Synthesis of 1,2,3-triazole linked galactopyranosides and evaluation of cholera toxin inhibition. Org. Biomol. Chem. 2011;21:8465–8474. doi: 10.1039/c1ob06317k. PubMed DOI

Deguise I., Lagnoux D., Roy R. Synthesis of glycodendrimers containing both fucoside and galactoside residues and their binding properties to Pa-IL and PA-IIL lectins from Pseudomonas aeruginosa. New J. Chem. 2007;31:1321–1331. doi: 10.1039/b701237c. DOI

Guchhait G., Misra A.K. Efficient glycosylation of unprotected sugars using sulfamic acid: A mild eco-friendly catalyst. Catal. Commun. 2011;14:52–57. doi: 10.1016/j.catcom.2011.07.016. DOI

Matta K.L., Girotra R.N., Barlow J.J. Synthesis of p-nitrobenzyl and p-nitrophenyl 1-thioglycopyranosides. Carbohydr. Res. 1975;43:101–109. doi: 10.1016/S0008-6215(00)83976-2. PubMed DOI

Adinolfi M., Capasso D., Di Gaetano S., Iadonisi A., Leone L., Pastore A. A straightforward synthetic access to symmetrical glycosyl disulfides and biological evaluation thereof. Org. Biomol. Chem. 2011;9:6278–6283. doi: 10.1039/c1ob05619k. PubMed DOI

Eszenyi D., Kelemen V., Balogh F., Bege M., Csávás M., Herczegh P., Borbás A. Promotion of a reaction by cooling—Stereoselective 1,2-cis-alpha-Thioglycoconjugation by Thiol-Ene coupling at −80 °C. Chem. Eur. J. 2018;24:18–4532. doi: 10.1002/chem.201800668. PubMed DOI

Lázár L., Csávás M., Herczeg M., Herczegh P., Borbás A. Synthesis of S-linked glycoconjugates and S-disaccharides by thiol-ene coupling reaction of enoses. Org. Lett. 2012;14:4650–4653. doi: 10.1021/ol302098u. PubMed DOI

Varela O., De Fina G.M., De Lederkremer R.M. The reaction of 2-hydroxyglycal esters with alcohols in the presence of N-iodosuccinimide, stereoselective synthesis of α anomers of alkyl 3-deoxyhex-2-enopyranosides and 3,4-dideoxyhex-3-enopyranosid-2-uloses. Carbohydr. Res. 1987;167:187–196. doi: 10.1016/0008-6215(87)80278-1. DOI

Cecioni S., Praly J.-P., Matthews S.E., Wimmerová M., Imberty A., Vidal S. Rational design and synthesis of optimized glycoclusters for multivalent lectin–carbohydrate interactions: influence of the linker arm. Chem. Eur. J. 2012;18:6250–6263. doi: 10.1002/chem.201200010. PubMed DOI

Deniaud D., Julienne K., Gouin S.G. Insights in the rational design of synthetic multivalent glycoconjugates as lectin ligands. Org. Biomol. Chem. 2011;9:966–979. doi: 10.1039/C0OB00389A. PubMed DOI

Tielker D., Hacker S., Loris R., Strathmann M., Wingender J., Wilhelm S., Rosenau F., Jaeger K.-E. Pseudomonas aeruginosa LecB is located in the outer membrane and is involved in biofilm formation. Microbiology. 2005;151:1313–1323. doi: 10.1099/mic.0.27701-0. PubMed DOI

Cott C., Thuenauer R., Landi A., Kühn K., Juillot S., Imberty A., Madl J., Eierhoff T., Römer W. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation. Biochim. Biophys. Acta. 2016;1863:1106–1118. doi: 10.1016/j.bbamcr.2016.02.004. PubMed DOI PMC

Nilsson E., Kollberg H., Johannesson M., Wejåker P.E., Carlander D., Larsson A. More than 10 years’ continuous oral treatment with specific immunoglobulin Y for the prevention of Pseudomonas aeruginosa infections: A case report. J. Med. Food. 2007;10:375–378. doi: 10.1089/jmf.2006.214. PubMed DOI

Herrmann G., Yang L., Wu H., Song Z., Wang H., Høiby N., Ulrich M., Molin S., Riethmüller J., Döring G. Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J. Infect. Dis. 2010;202:1585–1592. doi: 10.1086/656788. PubMed DOI

Hauber H.P., Schulz M., Pforte A., Mack D., Zabel P., Schumacher U. Inhalation with fucose and galactose for treatment of Pseudomonas aeruginosa in cystic fibrosis patients. Int. J. Med. Sci. 2008;5:371–376. doi: 10.7150/ijms.5.371. PubMed DOI PMC

Kubíčková B., Hadrabová J., Vašková L., Mandys V., Stiborová M., Hodek P. Susceptibility of airways to Pseudomonas aeruginosa infection: Mouse neuraminidase model. Monatsh. Chem. 2017;148:1993–2002. doi: 10.1007/s00706-017-2035-4. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...