Investigation of the Binding Affinity of a Broad Array of l-Fucosides with Six Fucose-Specific Lectins of Bacterial and Fungal Origin
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
K119509
National Research and Development and Innovation Office of Hungary
TÉT_15_IN-1-2016-0071
National Research and Development and Innovation Office of Hungary
GINOP-2.3.2-15-2016-00008
EU and the European Regional Development Fund
János Bolyai Fellowship
Hungarian Academy of Sciences
New National Excellence Program, ÚNKP-18-4, Bolyai +
Ministry of Human Capacities
15-17572S
Czech Science Foundation
CIISB research infrastructure LM2015043
Ministry of Education, Youth and Sports
PubMed
31216664
PubMed Central
PMC6631993
DOI
10.3390/molecules24122262
PII: molecules24122262
Knihovny.cz E-zdroje
- Klíčová slova
- cystic fibrosis, glycoclusters, hemagglutination, l-fucosides, lectins, multivalency,
- MeSH
- bakteriální proteiny chemie metabolismus MeSH
- fukosa chemie metabolismus MeSH
- fungální proteiny chemie metabolismus MeSH
- hemaglutinace MeSH
- lektiny chemie metabolismus MeSH
- lidé MeSH
- testy inhibice hemaglutinace MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- fucose-binding lectin MeSH Prohlížeč
- fukosa MeSH
- fungální proteiny MeSH
- lektiny MeSH
Series of multivalent α-l-fucoside containing glycoclusters and variously decorated l-fucosides were synthesized to find potential inhibitors of fucose-specific lectins and study the structure-binding affinity relationships. Tri- and tetravalent fucoclusters were built using copper-mediated azide-alkyne click chemistry. Series of fucoside monomers and dimers were synthesized using various methods, namely glycosylation, an azide-alkyne click reaction, photoinduced thiol-en addition, and sulfation. The interactions between compounds with six fucolectins of bacterial or fungal origin were tested using a hemagglutination inhibition assay. As a result, a tetravalent, α-l-fucose presenting glycocluster showed to be a ligand that was orders of magnitude better than a simple monosaccharide for tested lectins in most cases, which can nominate it as a universal ligand for studied lectins. This compound was also able to inhibit the adhesion of Pseudomonas aeruginosa cells to human epithelial bronchial cells. A trivalent fucocluster with a protected amine functional group also seems to be a promising candidate for designing glycoconjugates and chimeras.
Central European Institute of Technology Masaryk University Kamenice 5 625 00 Brno Czech Republic
Department of Pharmaceutical Chemistry University of Debrecen Egyetem tér 1 H 4032 Debrecen Hungary
Zobrazit více v PubMed
Gibson R.L., Burns J.L., Ramsey B.W. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2003;168:918–951. doi: 10.1164/rccm.200304-505SO. PubMed DOI
Scanlin T.F., Glick M.C. Terminal glycosylation in cystic fibrosis. Biochim. Biophys. Acta. 1999;1455:241–253. doi: 10.1016/S0925-4439(99)00059-9. PubMed DOI
Sharon N., Lis H. Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 1998;98:637–674. doi: 10.1021/cr940413g. PubMed DOI
Imberty A., Wimmerová M., Mitchell E.P., Gilboa-Garber N. Structures of the lectins from Pseudomonas aeruginosa: Insight into the molecular basis for host glycan recognition. Microbes Infect. 2004;6:221–228. doi: 10.1016/j.micinf.2003.10.016. PubMed DOI
Chemani C., Imberty A., de Bentzmann S., Pierre M., Wimmerová M., Guery B.P., Faure K. Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands. Infect. Immun. 2009;77:2065–2075. doi: 10.1128/IAI.01204-08. PubMed DOI PMC
Šulák O., Cioci G., Lameignère E., Balloy V., Round A., Gutsche I., Malinovská L., Chignard M., Kosma P., Aubert D.F., et al. Burkholderia cenocepacia BC2L-C is a super lectin with dual specificity and proinflammatory activity. PLoS Pathog. 2011;7 doi: 10.1371/journal.ppat.1002238. PubMed DOI PMC
Houser J., Komarek J., Kostlanova N., Cioci G., Varrot A., Kerr S.C., Lahmann M., Balloy V., Fahy J.V., Chignard M., et al. A soluble fucose-specific lectin from Aspergillus fumigatus conidia-structure, specificity and possible role in fungal pathogenicity. PLoS ONE. 2013;8:1–15. doi: 10.1371/journal.pone.0083077. PubMed DOI PMC
Mitchell E.P., Sabin C., Šnajdrová L., Pokorná M., Perret S., Gautier C., Hofr C., Gilboa-Garber N., Koča J., Wimmerová M., et al. High affinity fucose binding of Pseudomonas aeruginosa lectin PA-IIL: 1.0 A resolution crystal structure of the complex combined with thermodynamics and computational chemistry approaches. Proteins. 2005;58:735–746. doi: 10.1002/prot.20330. PubMed DOI
Houser J., Komarek J., Cioci G., Varrot A., Imberty A., Wimmerova M. Structural insights into Aspergillus fumigatus lectin specificity: AFL binding sites are functionally non-equivalent. Acta Cryst. 2015;D71:442–453. doi: 10.1107/S1399004714026595. PubMed DOI
Yamaki K., Yoshino S. Aspergillus oryzae lectin induces anaphylactoid oedema and mast cell activation through its interaction with fucose of mast cell–bound non-specific IgE. Scand. J. Immun. 2011;74:445–453. doi: 10.1111/j.1365-3083.2011.02598.x. PubMed DOI
Wimmerova M., Mitchell E., Sanchez J.F., Gautier C., Imberty A. Crystal structure of fungal lectin: Six-bladed beta-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin. J. Biol. Chem. 2003;278:27059–27067. doi: 10.1074/jbc.M302642200. PubMed DOI
Denny T.P. Ralstonia solanacearum—A plant pathogen in touch with its host. Trends Microbiol. 2000;8:486–489. doi: 10.1016/S0966-842X(00)01860-6. PubMed DOI
Kostlánová N., Mitchell E.P., Lortat-Jacob H., Oscarson S., Lahmann M., Gilboa-Garber N., Chambat G., Wimmerová M., Imberty A. The fucose-binding lectin from Ralstonia solanacearum. A new type of beta-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan. J. Biol. Chem. 2005;280:27839–27849. doi: 10.1074/jbc.M505184200. PubMed DOI
Cecioni S., Imberty A., Vidal S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem. Rev. 2015;115:525–561. doi: 10.1021/cr500303t. PubMed DOI
Goyard D., Baldoneschi V., Varrot A., Fiore M., Imberty A., Richichi B., Renaudet O., Nativi C. Multivalent Glycomimetics with Affinity and Selectivity toward Fucose-Binding Receptors from Emerging Pathogens. Bioconjug. Chem. 2018;29:83–88. doi: 10.1021/acs.bioconjchem.7b00616. PubMed DOI
Lehot V., Brissonnet Y., Dussouy C., Brument S., Cabanettes A., Gillon E., Deniaud D., Varrot A., Le Pape P., Gouin S.G. Multivalent fucosides with nanomolar affinity for the aspergillus fumigatus lectin flea prevent spore adhesion to pneumocytes. Chemistry. 2018;24:19243–19249. doi: 10.1002/chem.201803602. PubMed DOI
Kašaková M., Malinovská L., Klejch T., Hlaváčková M., Dvořáková H., Fujdiarová E., Rottnerová Z., Maťátková O., Lhoták P., Wimmerová M., et al. Selectivity of original C-Hexopyranosyl Calix[4]arene conjugates towards lectins of different origin. Carbohydr. Res. 2018;469:60–72. doi: 10.1016/j.carres.2018.08.012. PubMed DOI
Sommer R., Wagner S., Rox K., Varrot A., Hauck D., Wamhoff E.C., Schreiber J., Ryckmans T., Brunner T., Rademacher C., et al. Glycomimetic, orally bioavailable lecb inhibitors block biofilm formation of Pseudomonas aeruginosa. J. Am. Chem. Soc. 2018;140:2537–2545. doi: 10.1021/jacs.7b11133. PubMed DOI
Hauck D., Joachim I., Frommeyer B., Varrot A., Philipp B., Möller H.M., Imberty A., Exner T.E., Titz A. Discovery of two classes of potent glycomimetic inhibitors of pseudomonas aeruginosa lecb with distinct binding modes. ACS Chem. Biol. 2013;8:1775–1784. doi: 10.1021/cb400371r. PubMed DOI
Buffet K., Gillon E., Holler M., Nierengarten J.F., Imberty A., Vincent S.P. Fucofullerenes as tight ligands of RSL and LecB, two bacterial lectins. Org. Biomol. Chem. 2015;13:6482. doi: 10.1039/C5OB00689A. PubMed DOI
Reymond J.L., Bergmann M., Darbre T. Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Chem. Soc. Rev. 2013;42:4814. doi: 10.1039/c3cs35504g. PubMed DOI
Galanos N., Gillon E., Imberty A., Matthews S.E., Vidal S. Pentavalent pillar[5]arene-based glycoclusters and their multivalent binding to pathogenic bacterial lectins. Org. Biomol. Chem. 2016;14:3476. doi: 10.1039/C6OB00220J. PubMed DOI
Donnier-Maréchal M., Galanos N., Grandjean T., Pascal Y., Ji D., Dong L., Gillon E., He X., Imberty A., Kipnis E., et al. Perylenediimide-based glycoclusters as high affinity ligands of bacterial lectins: Synthesis, binding studies and anti-adhesive properties. Org. Biomol. Chem. 2017;15:10037. doi: 10.1039/C7OB02749D. PubMed DOI
Hua Y., Beshr G., Garvey C.J., Tabor R.F., Titz A., Wilkinson B.L. Photoswitchable Janus glycodendrimer micelles as multivalent inhibitors of LecA and LecB from Pseudomonas aeruginosa. Colloids Surf. B Biointerfaces. 2017;159:605–612. doi: 10.1016/j.colsurfb.2017.08.016. PubMed DOI
Adamová L., Malinovská L., Wimmerová M. New sensitive detection method for lectin hemagglutination using microscopy. Microsc. Res. Tech. 2014;77:841–849. doi: 10.1002/jemt.22407. PubMed DOI
Jančaříková G., Herczeg M., Fujdiarová E., Houser J., Kövér K.E., Borbás A., Wimmerová M., Csávás M. Synthesis of α-L-fucopyranoside-presenting glycoclusters and investigation of their interaction with recombinant Photorhabdus asymbiotica lectin (PHL) Chem. Eur. J. 2018;24:4055–4068. doi: 10.1002/chem.201705853. PubMed DOI
Herczeg M., Mező E., Molnár N., Ng S.-K., Lee Y.-C., Dah-Tsyr Chang M., Borbás A. Inhibitory effect of multivalent rhamnobiosides on recombinant horseshoe crab plasma lectin interactions with Pseudomonas aeruginosa PAO1. Chem. Asian J. 2016;11:3398–3413. doi: 10.1002/asia.201601162. PubMed DOI
Chabre Y.M., Contino-Pepin C., Placide V., Shiao T.C., Roy R. Expeditive synthesis of glycodendrimer scaffolds based on versatile TRIS and mannoside derivatives. J. Org. Chem. 2008;73:5602–5605. doi: 10.1021/jo8008935. PubMed DOI
Leaver D.J., Dawson R.M., White J.M., Polyzos A., Hughes A.B. Synthesis of 1,2,3-triazole linked galactopyranosides and evaluation of cholera toxin inhibition. Org. Biomol. Chem. 2011;21:8465–8474. doi: 10.1039/c1ob06317k. PubMed DOI
Deguise I., Lagnoux D., Roy R. Synthesis of glycodendrimers containing both fucoside and galactoside residues and their binding properties to Pa-IL and PA-IIL lectins from Pseudomonas aeruginosa. New J. Chem. 2007;31:1321–1331. doi: 10.1039/b701237c. DOI
Guchhait G., Misra A.K. Efficient glycosylation of unprotected sugars using sulfamic acid: A mild eco-friendly catalyst. Catal. Commun. 2011;14:52–57. doi: 10.1016/j.catcom.2011.07.016. DOI
Matta K.L., Girotra R.N., Barlow J.J. Synthesis of p-nitrobenzyl and p-nitrophenyl 1-thioglycopyranosides. Carbohydr. Res. 1975;43:101–109. doi: 10.1016/S0008-6215(00)83976-2. PubMed DOI
Adinolfi M., Capasso D., Di Gaetano S., Iadonisi A., Leone L., Pastore A. A straightforward synthetic access to symmetrical glycosyl disulfides and biological evaluation thereof. Org. Biomol. Chem. 2011;9:6278–6283. doi: 10.1039/c1ob05619k. PubMed DOI
Eszenyi D., Kelemen V., Balogh F., Bege M., Csávás M., Herczegh P., Borbás A. Promotion of a reaction by cooling—Stereoselective 1,2-cis-alpha-Thioglycoconjugation by Thiol-Ene coupling at −80 °C. Chem. Eur. J. 2018;24:18–4532. doi: 10.1002/chem.201800668. PubMed DOI
Lázár L., Csávás M., Herczeg M., Herczegh P., Borbás A. Synthesis of S-linked glycoconjugates and S-disaccharides by thiol-ene coupling reaction of enoses. Org. Lett. 2012;14:4650–4653. doi: 10.1021/ol302098u. PubMed DOI
Varela O., De Fina G.M., De Lederkremer R.M. The reaction of 2-hydroxyglycal esters with alcohols in the presence of N-iodosuccinimide, stereoselective synthesis of α anomers of alkyl 3-deoxyhex-2-enopyranosides and 3,4-dideoxyhex-3-enopyranosid-2-uloses. Carbohydr. Res. 1987;167:187–196. doi: 10.1016/0008-6215(87)80278-1. DOI
Cecioni S., Praly J.-P., Matthews S.E., Wimmerová M., Imberty A., Vidal S. Rational design and synthesis of optimized glycoclusters for multivalent lectin–carbohydrate interactions: influence of the linker arm. Chem. Eur. J. 2012;18:6250–6263. doi: 10.1002/chem.201200010. PubMed DOI
Deniaud D., Julienne K., Gouin S.G. Insights in the rational design of synthetic multivalent glycoconjugates as lectin ligands. Org. Biomol. Chem. 2011;9:966–979. doi: 10.1039/C0OB00389A. PubMed DOI
Tielker D., Hacker S., Loris R., Strathmann M., Wingender J., Wilhelm S., Rosenau F., Jaeger K.-E. Pseudomonas aeruginosa LecB is located in the outer membrane and is involved in biofilm formation. Microbiology. 2005;151:1313–1323. doi: 10.1099/mic.0.27701-0. PubMed DOI
Cott C., Thuenauer R., Landi A., Kühn K., Juillot S., Imberty A., Madl J., Eierhoff T., Römer W. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation. Biochim. Biophys. Acta. 2016;1863:1106–1118. doi: 10.1016/j.bbamcr.2016.02.004. PubMed DOI PMC
Nilsson E., Kollberg H., Johannesson M., Wejåker P.E., Carlander D., Larsson A. More than 10 years’ continuous oral treatment with specific immunoglobulin Y for the prevention of Pseudomonas aeruginosa infections: A case report. J. Med. Food. 2007;10:375–378. doi: 10.1089/jmf.2006.214. PubMed DOI
Herrmann G., Yang L., Wu H., Song Z., Wang H., Høiby N., Ulrich M., Molin S., Riethmüller J., Döring G. Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J. Infect. Dis. 2010;202:1585–1592. doi: 10.1086/656788. PubMed DOI
Hauber H.P., Schulz M., Pforte A., Mack D., Zabel P., Schumacher U. Inhalation with fucose and galactose for treatment of Pseudomonas aeruginosa in cystic fibrosis patients. Int. J. Med. Sci. 2008;5:371–376. doi: 10.7150/ijms.5.371. PubMed DOI PMC
Kubíčková B., Hadrabová J., Vašková L., Mandys V., Stiborová M., Hodek P. Susceptibility of airways to Pseudomonas aeruginosa infection: Mouse neuraminidase model. Monatsh. Chem. 2017;148:1993–2002. doi: 10.1007/s00706-017-2035-4. DOI