A new 4-(pyridinyl)-4H-benzo[g]chromene-5,10-dione ruthenium(II) complex inducing senescence in 518A2 melanoma cells

. 2019 Aug ; 24 (5) : 647-657. [epub] 20190619

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31218441

Grantová podpora
17-05302S Czech Science Foundation - International
Scho 402/12 Deutsche Forschungsgemeinschaft - International

Odkazy

PubMed 31218441
DOI 10.1007/s00775-019-01677-y
PII: 10.1007/s00775-019-01677-y
Knihovny.cz E-zdroje

2-Amino-5,10-dihydro-5,10-dioxo-4(pyridine-3-yl)-4H-benzo[g]chromene-3-carbonitrile 5, a cytotoxic lawsone derivative, was reacted with [Ru(p-cymene)Cl2]2 to afford a new Ru(II) 'piano-stool' complex 6 which differed from its ligand 5 by a greater selectivity for highly invasive 518A2 melanoma cells over human dermal fibroblasts in MTT cytotoxicity assays, and by inducing senescence rather than apoptosis in the former. DNA is a likely cellular target of complex 6 as it bound, presumably non-covalently, to linear and circular double-stranded DNA in vitro and as ruthenium was found in the lysate of nuclei of treated 518A2 melanoma cells. It also caused a fivefold increase of reactive oxygen species in these cells, originating from a more persistent redox cycling as visualised by cyclic voltammetry.

Zobrazit více v PubMed

Garbe C, Peris K, Hauschild A, Saiag P, Middleton M, Bastholt L et al (2016) Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline—update 2016. Eur J Cancer 63:201–217 PubMed DOI

Pasquali S, Hadjinicolaou AV, Chiarion Sileni V, Rossi CR, Mocellin S (2018) Systemic treatments for metastatic cutaneous melanoma. Cochrane Database Syst Rev 2:CD011123 PubMed

Antonarakis ES, Emadi A (2010) Ruthenium-based chemotherapeutics: are they ready for prime time? Cancer Chemother Pharmacol 66:1–9 PubMed DOI PMC

Rademaker-Lakhai JM, van den Bongard D, Pluim D, Beijnen JH, Schellens JH (2004) A phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin Cancer Res 10:3717–3727 PubMed DOI

Hartinger CG, Jakupec MA, Zorbas-Seifried S, Groessl M, Egger A, Berger W et al (2008) KP1019 a new redox-active anticancer agent—preclinical development and results of a clinical phase I study in tumor patients. Chem Biodivers 5:2140–2155 PubMed DOI

Burris HA, Bakewell S, Bendell JC, Infante J, Jones SF, Spigel DR et al (2016) Safety and activity of IT-139, a ruthenium-based compound, in patients with advanced solid tumours: a first-in-human, open-label, dose-escalation phase I study with expansion cohort. ESMO Open 1:e000154 PubMed DOI

Allardyce CS, Dyson PJ (2001) Ruthenium in medicine: current clinical uses and future prospects. Platin Metals Rev 45:62–69

Biersack B (2016) Anticancer activity and modes of action of (arene) ruthenium(II) complexes coordinated to C-, N-, and O-ligands. Mini Rev Med Chem 16:804–814 PubMed DOI

Pettinari R, Petrini A, Marchetti F, Pettinari C, Riedel T, Therrien B et al (2017) Arene-ruthenium(II) complexes with bioactive ortho-hydroxydibenzoylmethane ligands: synthesis, structure, and cytotoxicity. Eur J Inorg Chem 12:1800–1806 DOI

Schmitt F, Kasparkova J, Brabec V, Begemann G, Schobert R, Biersack B (2018) New (arene)ruthenium(II) complexes of 4-aryl-4H-naphthopyrans with anticancer and anti-vascular activities. J Inorg Biochem 184:69–78 PubMed DOI

Thota S, Rodrigues DA, Crans DC, Barreiro EJ (2018) Ru(II) compounds: next-generation anticancer metallotherapeutics? J Med Chem 61:5805–5821 PubMed DOI

Biersack B, Zoldakova M, Effenberger K, Schobert R (2010) (Arene)Ru(II) complexes of epidermal growth factor receptor inhibiting tyrophostins with enhanced selectivity and cytotoxicity in cancer cells. Eur J Med Chem 45:1972–1975 PubMed DOI

Pradhan R, Dandawate P, Vyas A, Padhye S, Biersack B, Schobert R et al (2012) From body art to anticancer activities: perspectives on medical properties of henna. Curr Drug Target 13:1777–1798 DOI

Nadkarni KM (1908) Indian plants and drugs, 1st edn. Nortan & Co., Madras

Park EJ, Min KJ, Lee TJ, Yoo YH, Kim YS, Kwon TK (2014) β-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells. Cell Death Dis 5:e1230 PubMed DOI PMC

Magedov IV, Kireev AS, Jenkins AR, Evdokimov NM, Lima DT, Tongwa P et al (2012) Structural simplification of bioactive natural products with multicomponent synthesis. 4H-pyrano-[2,3-b]naphthoquinones with anticancer activity. Bioorg Med Chem Lett 22:5195–5198 PubMed DOI

Benimetskaya L, Ayyanar K, Kornblum N, Castanotto D, Rossi J, Wu S et al (2006) Bcl-2 protein in 518A2 melanoma cells in vivo and in vitro. Clin Cancer Res 12:4940–4948 PubMed DOI

Zerp SF, Van Elsas A, Peltenburg LTC, Schrier PI (1999) p53 mutations in human cutaneous melanoma correlate with sun exposure but are not always involved in melanomagenesis. Br J Cancer 79:921–926 PubMed DOI PMC

Brabec V, Novakova O (2006) DNA binding mode of ruthenium complexes and relationship to tumor cell toxicity. Drug Resist Update 9:111–122 DOI

Intini FP, Zajac J, Novohradsky V, Saltarella T, Pacifico C et al (2017) Novel antitumor platinum(II) conjugates containing the nonsteroidal anti-inflammatory agent diclofenac: synthesis and dual mechanism of antiproliferative effects. Inorg Chem 56:1483–1497 PubMed DOI

Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS et al (2013) Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One 8:e81162 PubMed DOI PMC

Kapitza S, Jakupec MA, Uhl M, Keppler BK, Marian B (2005) The heterocyclic ruthenium(III) complex KP1019 (FFC14A) causes DNA damage and oxidative stress in colorectal tumor cells. Cancer 226:115–121

Park EJ, Choi KS, Kwon TK (2011) β-Lapachone-induced reactive oxygen species (ROS) generation mediates autophagic cell death in glioma U87 MG cells. Chem Biol Interact 189:37–44 PubMed DOI

Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621 PubMed DOI PMC

Itahana K, Campisi J, Dimri GP (2004) Mechanisms of cellular senescence in human and mouse cells. Biogerontology 5:1–10 PubMed DOI

Debacq-Chainiaux F, Ameur RB, Bauwens E, Dumortier E, Toutfaire M, Toussaint O (2016) Stress-induced (premature) senescence. In: Rattan S, Hayflick L (eds) Cellular ageing and replicative senescence. Healthy Ageing and longevity, 4th edn. Springer, Cham, pp 243–262

Okada H, Mak TW (2004) Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 4:592–603 PubMed DOI

Gire V, Dulic V (2015) Senescence from G2 arrest, revisited. Cell Cycle 14:297–304 PubMed DOI PMC

Sikora E, Mosieniak G, Sliwinska MA (2016) Morphological and functional characteristics of senescent cells. Curr Drug Targets 17:377–387 PubMed DOI

Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113:3613–3622 PubMed

Svedman FC, Pillas D, Taylor A, Kaur M, Linder R, Hansson J (2016) Stage-specific survival and recurrence in patients with cutaneous malignant melanoma in Europe—a systematic review of the literature. Clin Epidemiol 8:109–122 PubMed DOI PMC

Toussaint O, Royer V, Salmon M, Remacle J (2002) Stress-induced premature senescence and tissue ageing. Biochem Pharmacol 64:1007–1009 PubMed DOI

Berns A (2002) Senescence: a companion in chemotherapy? Cancer Cell 1:309–311 PubMed DOI

te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62:1876–1883

Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y et al (1999) A senescent-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59:3761–3767 PubMed

Roninson IB, Broude EV, Chang BD (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Update 4:303–313 DOI

Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci USA 92:4337–4341 PubMed DOI

Ewald JA, Desotelle JA, Wilding G, Jarrard DF (2010) Therapy-induced senescence in cancer. J Natl Cancer Inst 102:1536–1546 PubMed DOI PMC

Nardella C, Clohessy JG, Alimonti A, Pandolfi PP (2011) Pro-senescence therapy for cancer treatment. Nat Rev Cancer 11:503–511 DOI

Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM, Lowe SW (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346 PubMed DOI

Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al (2007) Senescence and tumor clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660 PubMed DOI PMC

Martin L, Schilder RJ (2006) Novel non-cytotoxic therapy in ovarian cancer: current status and future prospects. J Natl Comp Cancer Netw 4:955–966 DOI

Winquist E, Waldron T, Berry S, Ernst DS, Hotte S, Lukka H (2006) Non-hormonal systemic therapy in men with hormone-refractory prostate cancer and metastases: a systemic review from the cancer care Ontario program in evidence-based care’s genitourinary cancer disease site group. BMC Cancer 6:112 PubMed DOI PMC

Coppe JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118 PubMed DOI PMC

Lee M, Lee JS (2014) Exploiting tumor cell senescence in anticancer therapy. BMB Rep 47:51–59 PubMed DOI PMC

Freund A, Orjalo V, Desprez PY, Campisi J (2010) Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16:238–246 PubMed DOI PMC

Soengas MS, Lowe SW (2003) Apoptosis and melanoma chemoresistance. Oncogene 22:3138–3151 PubMed DOI

Zhuang D, Mannava S, Grachtchouk V, Tang WH, Patil S, Wawrzyniak JA et al (2008) C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 27:6623–6634 PubMed DOI

Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA et al (2006) Cellular Senescence in Naevi and immortalization in melanoma: a role for p16? Br J Cancer 95:496–505 PubMed DOI PMC

Michaloglou C, Vredeveld L, Soengas M, Denoyelle C, Kuilman T, van der Horst C et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724 PubMed DOI PMC

Mhaidat NM, Zhang XD, Allen J, Avery-Kiejda KA, Scott RJ, Hersey P (2007) Temozolomide induces senescence but not apoptosis in human melanoma cells. Br J Cancer 97:1225–1233 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...