From Anhydrous Zinc Oxide Nanoparticle Powders to Aqueous Colloids: Impact of Water Condensation and Organic Salt Adsorption on Free Exciton Emission
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P 28211
Austrian Science Fund FWF - Austria
PubMed
31244249
PubMed Central
PMC7116045
DOI
10.1021/acs.langmuir.9b00656
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Variations in the composition and structure of ZnO nanoparticle interfaces have a key influence on the materials' optoelectronic properties and are responsible for high number of discrepant results reported for ZnO-based nanomaterials. Here, we conduct a systematic study of the room-temperature photoluminescence of anhydrous ZnO nanocrystals, as synthesized in the gas phase and processed in water-free atmosphere, and of their colloidal derivatives in aqueous dispersions with varying amounts of organic salt admixtures. A free exciton band at hν = 3.3 eV is essentially absent in the anhydrous ZnO nanocrystal powders measured in vacuum or in oxygen atmosphere. Surface hydration of the nanoparticles during colloid formation leads to the emergence of the free exciton band at hν = 3.3 eV and induces a small but significant release in lattice strain as detected by X-ray diffraction. Most importantly, admixture of acetate or citrate ions to the aqueous colloidal dispersions not only allows for the control of the ζ-potential but also affects the intensity of the free exciton emission in a correlated manner. The buildup of negative charge at the solid-liquid interface, as produced by citrate adsorption, increases the free exciton emission. This effect is attributed to the suppression of electron trapping in the near-surface region, which counteracts nonradiative exciton recombination. Using well-defined ZnO nanoparticles as model systems for interface chemistry studies, our findings highlight water-induced key effects that depend on the composition of the aqueous solution shell around the semiconducting metal oxide nanoparticles.
Zobrazit více v PubMed
Boles MA, Ling D, Hyeon T, Talapin DV. The Surface Science of Nanocrystals. Nat Mater. 2016;15:141–153. PubMed
Distaso M, Bertoni G, Todisco S, Marras S, Gallo V, Manna L, Peukert W. Interplay of Internal Structure and Interfaces on the Emitting Properties of Hybrid ZnO Hierarchical Particles. ACS Appl Mater Interfaces. 2017;9:15182–15191. PubMed
Heinz H, Pramanik C, Heinz O, Ding Y, Mishra RK, Marchon D, Flatt RJ, Estrela-Lopis I, Llop J, Moya S, Ziolo RF. Nanoparticle Decoration with Surfactants: Molecular Interactions, Assembly, and Applications. Surf Sci Rep. 2017;72:1–58.
Shen Z, Chun J, Rosso KM, Mundy CJ. Surface Chemistry Affects the Efficacy of the Hydration Force between Two ZnO(1010) Surfaces. J Phys Chem C. 2018;122:12259–12266.
Zobel M, Neder RB, Kimber SAJ. Universal Solvent Restructuring induced by Colloidal Nanoparticles. Science. 2015;347:292–294. PubMed
Zhang T, Dong W, Keeter-Brewer M, Konar S, Njabon RN, Tian ZR. Site-specific Nucleation and Growth Kinetics in hierarchical Nanosyntheses of Branched ZnO Crystallites. J Am Chem Soc. 2006;128:10960–10968. PubMed
Zhang X, Shen Z, Liu J, Kerisit SN, Bowden ME, Sushko ML, Yoreo JJde, Rosso KM. Direction-specific Interaction Forces underlying Zinc Oxide Crystal Growth by Oriented Attachment. Nat Commun. 2017;8 No. 835. PubMed PMC
Franks GV, Tallon C, Studart AR, Sesso ML, Leo S. Colloidal Processing: Enabling Complex Shaped Ceramics with unique Multiscale Structures. J Am Ceram Soc. 2017;100:458–490.
Pillai SC, Kelly JM, McCormack DE, O’Brien P, Ramesh R. The Effect of Processing Conditions on Varistors prepared from Nanocrystalline ZnO. J Mater Chem. 2003;13:2586–2590.
Choi S, Phillips MR, Aharonovich I, Pornsuwan S, Cowie BCC, Ton-That C. Photophysics of Point Defects in ZnO Nanoparticles. Adv Opt Mater. 2015;3:821–827.
Stavale F, Nilius N, Freund H-J. STM Luminescence Spectroscopy of Intrinsic Defects in ZnO(0001) Thin Films. J Phys Chem Lett. 2013;4:3972–3976.
Stavale F, Pascua L, Nilius N, Freund H-J. Luminescence Properties of Nitrogen-doped ZnO. J Phys Chem C. 2014;118:13693–13696.
Klingshirn C, Fallert J, Zhou H, Sartor J, Thiele C, Maier-Flaig F, Schneider D, Kalt H. 65 Years of ZnO Research - Old and very Recent Results. Phys Status Solidi B. 2010;247:1424–1447.
Djurisić AB, Leung YH. Optical Properties of ZnO Nanostructures. Small. 2006;2:944–961. PubMed
van Dijken A, Meulenkamp EA, Vanmaekelbergh D, Meijerink A. Identification of the Transition Responsible for the Visible Emission in ZnO Using Quantum Size Effects. J Lumin. 2000;90:123–128.
Ischenko V, Polarz S, Grote D, Stavarache V, Fink K, Driess M. Zinc Oxide Nanoparticles with Defects. Adv Funct Mater. 2005;15:1945–1954.
Janotti A, van de Walle CG. Native Point Defects in ZnO. Phys Rev B. 2007:76. doi: 10.1103/PhysRevB.76.165202. DOI
Brauer G, Anwand W, Grambole D, Egger W, Sperr P, Beinik I, Wang L, Teichert C, Kuriplach J, Lang J, Zviagin S, et al. Characterization of ZnO Nanostructures: A Challenge to Positron Annihilation Spectroscopy and other Methods. Phys Status Solidi C. 2009;6:2556–2560.
Wang D, Chen ZQ, Wang DD, Qi N, Gong J, Cao CY, Tang Z. Positron Annihilation Study of the interfacial Defects in ZnO Nanocrystals: Correlation with Ferromagnetism. J Appl Phys. 2010;107 No. 023524.
Knutsen KE, Galeckas A, Zubiaga A, Tuomisto F, Farlow GC, Svensson BG, Kuznetsov AY. Zinc Vacancy and Oxygen Interstitial in ZnO revealed by sequential Annealing and Electron Irradiation. Phys Rev B Condens Matter Mater Phys. 2012;86 No. 121203.
Zhang Z, Yates JT. Band Bending in Semiconductors: Chemical and Physical Consequences at Surfaces and Interfaces. Chem Rev. 2012;112:5520–5551. PubMed
Drouilly C, Krafft J-M, Averseng F, Lauron-Pernot H, Bazer-Bachi D, Chizallet C, Lecocq V, Costentin G. Role of Oxygen Vacancies in the Basicity of ZnO: From the Model Methylbutynol Conversion to the Ethanol Transformation Application. Appl Catal, A. 2013;453:121–129.
Zhang H, Gheisi AR, Sternig A, Müller K, Schowalter M, Rosenauer A, Diwald O, Mädler L. Bulk and Surface Excitons in Alloyed and Phase-Separated ZnO-MgO Particulate Systems. ACS Appl Mater Interfaces. 2012;4:2490–2497. PubMed
Berger T, Diwald O. In: Defects at Oxide Surfaces. Jupille J, Thornton G, editors. Springer: Springer International Publishing; Switzerland: 2015.
Stankic S, Sternig A, Finocchi F, Bernardi J, Diwald O. Zinc Oxide Scaffolds on MgO Nanocubes. Nanotechnology. 2010;21 No. 355603. PubMed
Idriss H, Andrews RM, Barteau MA. Application of Luminescence Techniques to Probe Surface-Adsorbate Interactions on Oxide Single Crystals. J Vac Sci Technol A. 1993;11:209–218.
Idriss H, Barteau MA. Photoluminescence From Zinc Oxide Powder to Probe Adsorption and Reaction of O2, CO, H2, HCOOH, and CH3OH. J Phys Chem. 1992;96:3382–3388.
Idriss H, Barteau MA. Active Sites on Oxides: From Single Crystals to Catalysts. Adv Catal. 2000;45:261–331.
Gervasio M, Lu K. Monte Carlo Simulation Modeling of Nanoparticle-Polymer Co-Suspensions. Langmuir. 2019;35:161–170. PubMed
Wu W. Inorganic Nanomaterials for Printed Electronics: A Review. Nanoscale. 2017;9:7342–7372. PubMed
Bell NS, Monson TC, DiAntonio C, Wu Y. Practical Colloidal Processing of Multication Ceramics. J Ceram Sci Technnol. 2016;7:1–28.
Hidber PC, Graule TJ, Gauckler LJ. Influence of the Dispersant Structure on Properties of Electrostatically stabilized Aqueous Alumina Suspensions. J Eur Ceram Soc. 1997;17:239–249.
Kocsis K, Niedermaier M, Schwab T, Kasparek V, Berger T, Diwald O. Exciton Emission and Light-Induced Charge Separation in Colloidal ZnO Nanocrystals. ChemPhotoChem. 2018;2:994–1001. PubMed PMC
Norberg NS, Gamelin DR. Influence of Surface Modification on the Luminescence of Colloidal ZnO Nanocrystals. J Phys Chem B. 2005;109:20810–20816. PubMed
Ghosh M, Raychaudhuri AK. Ionic Environment Control of Visible Photoluminescence from ZnO Nanoparticles. Appl Phys Lett. 2008;93 No. 123113.
Hodlur RM, Rabinal MK, Mohamed Ikram I. Influence of Dipole Moment of Capping Molecules on the Optoelectronic Properties of ZnO Nanoparticles. J Lumin. 2014;149:317–324.
Sandmann A, Kompch A, Mackert V, Liebscher CH, Winterer M. Interaction of L-Cysteine with ZnO: Structure, Surface Chemistry, and Optical Properties. Langmuir. 2015;31:5701–5711. PubMed
Inamdar DY, Vaidya SR, Mahamuni S. On the Photoluminescence Emission of ZnO nanocrystals. J Exp Nanosci. 2012;9:533–540.
Singh AK, Viswanath V, Janu VC. Synthesis, Effect of Capping Agents, Structural, Optical and Photoluminescence Properties of ZnO Nanoparticles. J Lumin. 2009;129:874–878.
Lin W, Schmidt J, Mahler M, Schindler T, Unruh T, Meyer B, Peukert W, Segets D. Influence of Tail Groups during Functionalization of ZnO Nanoparticles on Binding Enthalpies and Photoluminescence. Langmuir. 2017;33:13581–13589. PubMed
Simmons JG, Reish ME, Foreman JV, Liu J, Everitt HO. How Sulfidation of ZnO Powders Enhances Visible Fluorescence. J Mater Chem C. 2017;5:10770–10776.
Gheisi AR, Neygandhi C, Sternig AK, Carrasco E, Marbach H, Thomele D, Diwald O. O2 Adsorption Dependent Photoluminescence Emission from Metal Oxide Nanoparticles. Phys Chem Chem Phys. 2014;16:23922–23929. PubMed
Kocsis K, Niedermaier M, Bernardi J, Berger T, Diwald O. Changing Interfaces: Photoluminescent ZnO Nanoparticle Powders in Different Aqueous Environments. Surf Sci. 2016;652:253–260. PubMed PMC
Balzar D. In: Defect and Microstructure Analysis by Diffraction. Snyder RL, Fiala J, Bunge H, editors. Oxford University Press; Oxford: 1999.
Degen A, Kosec M. Effect of pH and impurities on the surface charge of zinc oxide in aqueous solution. J Eur Ceram Soc. 2000;20:667–673.
Gilbert B, Huang F, Zhang H, Waychunas GA, Banfield JF. Nanoparticles: Strained and Stiff. Science. 2004;305:651–654. PubMed
Waychunas GA, Zhang H. Structure, Chemistry, and Properties of Mineral Nanoparticles. Elements. 2008;4:381–387.
Zhang H, Gilbert B, Huang F, Banfield JF. Water-Driven Structure Transformation in Nanoparticles at Room Temperature. Nature. 2003;424:1025–1029. PubMed
Zhang H, Banfield JF. Structural Characteristics and Mechanical and Thermodynamic Properties of Nanocrystalline TiO2. Chem Rev. 2014;114:9613–9644. PubMed
Schindler T, Schmutzler T, Schmiele M, Lin W, Segets D, Peukert W, Appavou M-S, Kriele A, Gilles R, Unruh T. Changes within the Stabilizing Layer of ZnO Nanoparticles upon Washing. J Colloid Interface Sci. 2017;504:356–362. PubMed
Schindler T, Lin W, Schmutzler T, Lindner P, Peukert W, Segets D, Unruh T. Evolution of the Ligand Shell Around Small ZnO Nanoparticles During the Exchange of Acetate by Catechol: A Small Angle Scattering Study. ChemNanoMat. 2018;39:47.
Deinert J-C, Hofmann OT, Meyer M, Rinke P, Stähler J. Local Aspects of Hydrogen-induced Metallization of the ZnO(1010) Surface. Phys Rev B. 2015;91 No. 235313.
Stähler J, Rinke P. Global and Local Aspects of the Surface Potential Landscape for Energy Level Alignment at Organic-ZnO Interfaces. Chem. Phys. 2017;485–486:149–165.
Ozawa K, Mase K. Comparison of the Surface Electronic Structures of H-adsorbed ZnO Surfaces: An Angle-resolved Photoelectron Spectroscopy Study. Phys Rev B. 2011;83 No. 125406.
Noei H, Qiu H, Wang Y, Muhler M, Wöll C. Hydrogen Loading of Oxide Powder Particles: A Transmission IR Study for the Case of Zinc Oxide. ChemPhysChem. 2010;11:3604–3607. PubMed
Meyer B, Marx D, Dulub O, Diebold U, Kunat M, Langenberg D, Wöll C. Partial Dissociation of Water leads to Stable Superstructures on the Surface of Zinc Oxide. Angew Chem Int Ed. 2004;43:6642–6645. PubMed
Traeger F, Kauer M, Wöll C, Rogalla D, Becker H-W. Analysis of Surface, Subsurface, and Bulk Hydrogen in ZnO using Nuclear Reaction Analysis. Phys Rev B. 2011;84 No. 075462.