Exciton Emission and Light induced Charge Separation in colloidal ZnO Nanocrystals

. 2018 Nov ; 2 () : 994-1001.

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32895634

Grantová podpora
P 28211 Austrian Science Fund FWF - Austria

Adsorption of organic molecules at ZnO nanoparticle surfaces enables the transfer of energy or charge across resulting organic-inorganic interfaces and, consequently, determines the optoelectronic performance of ZnO based hybrids. We investigated on aqueous colloidal ZnO dispersions adsorption-induced changes with photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopy. Citrate and acetate ion adsorption increases or decreases radiative exciton annihilation at hν = 3.3 eV and at room temperature, respectively. Searching for a correspondence between PL emission and the yield of trapped charge carriers originating from exciton separation - using photon energies of hν = 4.6 eV and fluxes of = 1014 cm-2 s-1 for excitation - we found that there is a negligible fraction of paramagnetic products that originate from exciton separation. Upon polychromatic excitation with significantly higher photon fluxes (Ṅ ph = 1016 cm-2·s-1), ZnO specific shallow defects trap unpaired electrons in citrate and acetate functionalized samples. The adsorption dependent PL intensity changes and the excitation parameter dependent yield of separated charges (EPR) in colloidal ZnO nanoparticles underline that the distribution over the different exciton annihilation channels sensitively depends on interface composition and the intensity of the photoexcitation light.

Zobrazit více v PubMed

Zhang Y. ZnO Nanostructures. Fabrication and Applications. Vol. 43 Royal Society of Chemistry; 2017. ISBN 978-1-78262-741-8.

Willander M, Nur O, Sadaf JR, Qadir MI, Zaman S, Zainelabdin A, Bano N, Hussain I. 2010;3:2643–2667.

Gervasio M, Lu K. Soft Matter. 2017;13:5569–5579. PubMed

Gervasio M, Lu K. J Phys Chem C. 2017;121:11862–11871.

Xu L, Liang H-W, Yang Y, Yu S-H. Chem Rev. 2018;118:3209–3250. PubMed

Choi S, Phillips MR, Aharonovich I, Pornsuwan SBC, Cowie C, Ton-That C. Adv Opt Mater. 2015;3:821–827.

Lin W, Schmidt J, Mahler M, Schindler T, Unruh T, Meyer B, Peukert W, Segets D. Langmuir. 2017;33:13581–13589. [6] PubMed

Klingshirn C. Phys Stat Solidi (B) 2007;244:3027–3073.

Kolodziejczak-Radzimska A, Jesionowski T. Materials. 2014;7:2833–2881. PubMed PMC

Ischenko V, Polarz S, Grote D, Stavarache V, Fink K, Driess M. 2005;15:1945–1954.

Drouilly C, Krafft J-M, Averseng F, Casale S, Bazer-Bachi D, Chizallet C, Lecocq V, Vezin H, Lauron-Pernot H, Costentin G. J Phys Chem C. 2012;116:21297–21307.

Eichel R-A, Erdem E, Jakes P, Ozarowski A, van Tol J, Hoffmann RC, Schneider JJ. Funct Mater Lett. 2013;06 1330004.

Hu L, Huang J, He H, Zhu L, Liu S, Jin Y, Sun L, Ye Z. Nanoscale. 2013;5:3918–3930. PubMed

Inamdar DY, Pathak AK, Dubenko I, Ali N, Mahamuni S. J Phys Chem C. 2011;115:23671–23676.

Jagannatha Reddy A, Kokila MK, Nagabhushana H, Rao JL, Shivakumara C, Nagabhushana BM, Chakradhar RPS. Spectrochim acta. Part A. 2011;81:59–63. PubMed

Mhlongo GH, Shingange K, Tshabalala ZP, Dhonge BP, Mahmoud FA, Mwakikunga BW, Motaung DE. Appl Surf Sci. 2016;390:804–815.

Repp S, Erdem E. Spectrochim acta. Part A. 2016;152:637–644. PubMed

Ruf T, Repp S, Urban J, Thomann R, Erdem E. J Nanopart Res. 2016;18:25.

Senthilkumar K, Subramanian M, Ebisu H, Tanemura M, Fujita Y. J Phys Chem C. 2013;117:4299–4303.

Zhang L, Yin L, Wang C, lun N, Qi Y, Xiang D. J Phys Chem C. 2010;114:9651–9658.

Kaftelen H, Ocakoglu K, Thomann R, Tu S, Weber S, Erdem E. Phys Rev B. 2012;86 14113.

Kakazey M, Vlasova M, Juarez-Arellano EA, Torchynska T, Basiuk VA. RSC Adv. 2016;6:58709–58722.

Berger T, Diwald O. Traps and Interfaces in Photocatalysis. In: Schneider J, Bahnemann D, Ye J, Li Puma G, Dionysiou DD, editors. Energy and Environment Series. Royal Society of Chemistry; Cambridge: 2016.

Erdem E. J Alloys Comp. 2014;605:34–44.

Stevanovic A, Büttner M, Zhang Z, Yates JT. J Am Chem Soc. 2012;134:324–332. PubMed

Stevanovic A, Yates JT. J Phys Chem C. 2013;117:24189–24195.

Zhang Z, Yates JT. Chem Rev. 2012;112:5520–5551. PubMed

Berger T, Diwald O, Knözinger E, Sterrer M, Yates JT., Jr J Phys Chem B. 2006;8:1822–1826. PubMed

Cerrato E, Gionco C, Paganini MC, Giamello E. J Phys Cond Matter. 2017;29 444001. PubMed

Schneider J, Bahnemann D, Ye J, Li Puma G, Dionysiou DD, editors. Energy and Environment Series. Royal Society of Chemistry; Cambridge: 2016.

Kocsis K, Niedermaier M, Bernardi J, Berger T, Diwald O. Surf Sci. 2016;652:253–260. PubMed PMC

Degen A, Kosec M. J Eur Ceram Soc. 2000;20:667–673.

Park J-W, Shumaker-Parry JS. J Am Chem Soc. 2014;136:1907–1921. PubMed

van Dijken A, Meulenkamp EA, Vanmaekelbergh D, Meijerink A. J Lumin. 2000;90:123–128.

Sandmann A, Kompch A, Mackert V, Liebscher CH, Winterer M. Langmuir. 2015;31:5701–5711. PubMed

Gheisi AR, Neygandhi C, Sternig AK, Carrasco E, Marbach H, Thomele D, Diwald O. Phys Chem Chem Phys. 2014;16:23922–23929. PubMed

Foreman JV, Simmons JG, Baughman WE, Liu J, Everitt HO. J Appl Phys. 2013;113 133513.

Samoilova RI, Astashkin AV, Kurshev VV, Burilyn SY, Frolova II, Rachkovskaya LN. Appl Magn Reson. 1994;7:469–477.

Stehr JE, Meyer BK, Hofmann DM. Appl Magn Reson. 2010;39:137–150.

Thomele D, Siedl N, Bernardi J, Diwald O. J Phys Chem C. 2016;120:4581–4588.

Stoll S, Schweiger A. J Magn Res. 2006;178:42–55. PubMed

Lin F, Cojocaru B, Chou C-L, Cadigan CA, Ji Y, Nordlund D, Weng T-C, Zheng Z, Pârvulescu VI, Richards RM. ChemCatChem. 2013;5:3841–3846.

Sterrer M, Berger T, Diwald O, Knözinger E, Allouche A. Top Catal. 2007;46:111–119.

Pinarello G, Pisani C, D'Ercole A, Chiesa M, Paganini MC, Giamello E, Diwald O. Surf Sci. 2001;494:95–110.

Wu G, Li Z, Zhang X, Lu G. J Phys Chem Lett. 2014;5:2649–2656. PubMed

Buriak JM, Kamat PV, Schanze KS. Appl Mater Interf. 2014;6:11815–11816. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...