Iron overload reduces synthesis and elimination of bile acids in rat liver

. 2019 Jul 05 ; 9 (1) : 9780. [epub] 20190705

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31278332
Odkazy

PubMed 31278332
PubMed Central PMC6611795
DOI 10.1038/s41598-019-46150-7
PII: 10.1038/s41598-019-46150-7
Knihovny.cz E-zdroje

Excessive iron accumulation in the liver, which accompanies certain genetic or metabolic diseases, impairs bile acids (BA) synthesis, but the influence of iron on the complex process of BA homeostasis is unknown. Thus, we evaluated the effect of iron overload (IO) on BA turnover in rats. Compared with control rats, IO (8 intraperitoneal doses of 100 mg/kg every other day) significantly decreased bile flow as a consequence of decreased biliary BA secretion. This decrease was associated with reduced expression of Cyp7a1, the rate limiting enzyme in the conversion of cholesterol to BA, and decreased expression of Bsep, the transporter responsible for BA efflux into bile. However, IO did not change net BA content in faeces in response to increased intestinal conversion of BA into hyodeoxycholic acid. In addition, IO increased plasma cholesterol concentrations, which corresponded with reduced Cyp7a1 expression and increased expression of Hmgcr, the rate-limiting enzyme in de novo cholesterol synthesis. In summary, this study describes the mechanisms impairing synthesis, biliary secretion and intestinal processing of BA during IO. Altered elimination pathways for BA and cholesterol may interfere with the pathophysiology of liver damage accompanying liver diseases with excessive iron deposition.

Zobrazit více v PubMed

Boyer JL. Bile formation and secretion. Comprehensive Physiology. 2013;3:1035–1078. doi: 10.1002/cphy.c120027. PubMed DOI PMC

Vitek L, Haluzik M. The role of bile acids in metabolic regulation. J Endocrinol. 2016;228:R85–96. doi: 10.1530/joe-15-0469. PubMed DOI

Halilbasic E, Fuchs C, Traussnigg S, Trauner M, Farnesoid X. Receptor Agonists and Other Bile Acid Signaling Strategies for Treatment of Liver Disease. Digestive diseases. 2016;34:580–588. doi: 10.1159/000445268. PubMed DOI

Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM. Biological and physiological role of reactive oxygen species–the good, the bad and the ugly. Acta physiologica. 2015;214:329–348. doi: 10.1111/apha.12515. PubMed DOI

Brunet S, et al. Dietary iron overload and induced lipid peroxidation are associated with impaired plasma lipid transport and hepatic sterol metabolism in rats. Hepatology. 1999;29:1809–1817. doi: 10.1002/hep.510290612. PubMed DOI

Philippe MA, Ruddell RG, Ramm GA. Role of iron in hepatic fibrosis: one piece in the puzzle. World J Gastroenterol. 2007;13:4746–4754. doi: 10.3748/wjg.v13.i35.4746. PubMed DOI PMC

Fleming RE, Ponka P. Iron overload in human disease. N Engl J Med. 2012;366:348–359. doi: 10.1056/NEJMra1004967. PubMed DOI

Batts KP. Iron overload syndromes and the liver. Mod Pathol. 2007;20(Suppl 1):S31–39. doi: 10.1038/modpathol.3800715. PubMed DOI

Aigner E, Weiss G, Datz C. Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver. World Journal of Hepatology. 2015;7:177–188. doi: 10.4254/wjh.v7.i2.177. PubMed DOI PMC

Neuschwander-Tetri BA, et al. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956–965. doi: 10.1016/s0140-6736(14)61933-4. PubMed DOI PMC

Liang H, et al. Effect of iron on cholesterol 7alpha-hydroxylase expression in alcohol-induced hepatic steatosis in mice. J Lipid Res. 2017;58:1548–1560. doi: 10.1194/jlr.M074534. PubMed DOI PMC

Coppin H, et al. Gene expression profiling of Hfe-/- liver and duodenum in mouse strains with differing susceptibilities to iron loading: identification of transcriptional regulatory targets of Hfe and potential hemochromatosis modifiers. Genome Biol. 2007;8:R221. doi: 10.1186/gb-2007-8-10-r221. PubMed DOI PMC

Graham RM, et al. Hepatic iron loading in mice increases cholesterol biosynthesis. Hepatology. 2010;52:462–471. doi: 10.1002/hep.23712. PubMed DOI

Silva M, et al. Iron dextran increases hepatic oxidative stress and alters expression of genes related to lipid metabolism contributing to hyperlipidaemia in murine model. BioMed research international. 2015;2015:272617. doi: 10.1155/2015/272617. PubMed DOI PMC

Cunnane SC, McAdoo KR. Iron intake influences essential fatty acid and lipid composition of rat plasma and erythrocytes. J Nutr. 1987;117:1514–1519. doi: 10.1093/jn/117.9.1514. PubMed DOI

Dabbagh AJ, Mannion T, Lynch SM, Frei B. The effect of iron overload on rat plasma and liver oxidant status in vivo. Biochem J. 1994;300(Pt 3):799–803. doi: 10.1042/bj3000799. PubMed DOI PMC

Bristow-Craig HE, Strain JJ, Welch RW. Iron status, blood lipids and endogenous antioxidants in response to dietary iron levels in male and female rats. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition. 1994;64:324–329. PubMed

Najafzadeh H, Jalali MR, Morovvati H, Taravati F. Comparison of the prophylactic effect of silymarin and deferoxamine on iron overload-induced hepatotoxicity in rat. Journal of medical toxicology: official journal of the American College of Medical Toxicology. 2010;6:22–26. doi: 10.1007/s13181-010-0030-9. PubMed DOI PMC

Gulec S, Anderson GJ, Collins JF. Mechanistic and regulatory aspects of intestinal iron absorption. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2014;307:G397–G409. doi: 10.1152/ajpgi.00348.2013. PubMed DOI PMC

Anderson CP, Shen M, Eisenstein RS, Leibold EA. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta. 2012;1823:1468–1483. doi: 10.1016/j.bbamcr.2012.05.010. PubMed DOI PMC

Mehta KJ, et al. Iron Enhances Hepatic Fibrogenesis and Activates Transforming Growth Factor-beta Signaling in Murine Hepatic Stellate Cells. Am J Med Sci. 2018;355:183–190. doi: 10.1016/j.amjms.2017.08.012. PubMed DOI

Zinchuk V, Zinchuk O, Okada T. Experimental LPS-induced cholestasis alters subcellular distribution and affects colocalization of Mrp2 and Bsep proteins: a quantitative colocalization study. Microsc Res Tech. 2005;67:65–70. doi: 10.1002/jemt.20184. PubMed DOI

Cermanova J, et al. Boldine enhances bile production in rats via osmotic and farnesoid X receptor dependent mechanisms. Toxicol Appl Pharmacol. 2015;285:12–22. doi: 10.1016/j.taap.2015.03.004. PubMed DOI

Padda RS, et al. A high-fat diet modulates iron metabolism but does not promote liver fibrosis in hemochromatotic Hjv(−)/(−) mice. Am J Physiol Gastrointest Liver Physiol. 2015;308:G251–261. doi: 10.1152/ajpgi.00137.2014. PubMed DOI

Dongiovanni P, Fracanzani AL, Fargion S, Valenti L. Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target. J Hepatol. 2011;55:920–932. doi: 10.1016/j.jhep.2011.05.008. PubMed DOI

Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109:1125–1131. doi: 10.1172/JCI15593. PubMed DOI PMC

Seo K, Shin SM. Induction of Lipin1 by ROS-Dependent SREBP-2 Activation. Toxicological research. 2017;33:219–224. doi: 10.5487/tr.2017.33.3.219. PubMed DOI PMC

Dongiovanni P, et al. Statin use and non-alcoholic steatohepatitis in at risk individuals. J Hepatol. 2015;63:705–712. doi: 10.1016/j.jhep.2015.05.006. PubMed DOI

Prasnicka Alena, Cermanova Jolana, Hroch Milos, Dolezelova Eva, Rozkydalova Lucie, Smutny Tomas, Carazo Alejandro, Chladek Jaroslav, Lenicek Martin, Nachtigal Petr, Vitek Libor, Pavek Petr, Micuda Stanislav. Iron depletion induces hepatic secretion of biliary lipids and glutathione in rats. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2017;1862(12):1469–1480. doi: 10.1016/j.bbalip.2017.09.003. PubMed DOI

Geier A, Wagner M, Dietrich CG, Trauner M. Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim Biophys Acta. 2007;1773:283–308. doi: 10.1016/j.bbamcr.2006.04.014. PubMed DOI

Nishanth RP, et al. C-Phycocyanin inhibits MDR1 through reactive oxygen species and cyclooxygenase-2 mediated pathways in human hepatocellular carcinoma cell line. Eur J Pharmacol. 2010;649:74–83. doi: 10.1016/j.ejphar.2010.09.011. PubMed DOI

Madsen DC, Chang L, Wostmann B. ω-Muricholate: a tertiary bile acid of the Wistar rat. Proc. Indiana Acad. Sci. 1975;84:416–420.

Eyssen HJ, De Pauw G, Van Eldere J. Formation of hyodeoxycholic acid from muricholic acid and hyocholic acid by an unidentified gram-positive rod termed HDCA-1 isolated from rat intestinal microflora. Appl Environ Microbiol. 1999;65:3158–3163. PubMed PMC

Yu C, et al. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. The Journal of biological chemistry. 2000;275:15482–15489. doi: 10.1074/jbc.275.20.15482. PubMed DOI

Hirsova P, et al. Cholestatic effect of epigallocatechin gallate in rats is mediated via decreased expression of Mrp2. Toxicology. 2013;303:9–15. doi: 10.1016/j.tox.2012.10.018. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace