Mechanism of the Intermediary Phase Formation in Ti-20 wt. % Al Mixture during Pressureless Reactive Sintering
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-SVV/2019
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
31284548
PubMed Central
PMC6651457
DOI
10.3390/ma12132171
PII: ma12132171
Knihovny.cz E-zdroje
- Klíčová slova
- aluminides, in situ diffraction, mechanism, powder metallurgy, reactive sintering,
- Publikační typ
- časopisecké články MeSH
This work aims to describe the mechanism of intermediary phases formation in TiAl20 (wt. %) alloy composition during reactive sintering. The reaction between titanium and aluminum powders was studied by in situ diffraction and the results were confirmed by annealing at various temperatures. It was found that the Ti2Al5 phase formed preferentially and its formation was detected at 400 °C. So far, this phase has never been found in this alloy composition during reactive sintering processes. Subsequently, the Ti2Al5 phase reacted with the titanium, and the formation of the major phase, Ti3Al, was accompanied by the minor phase, TiAl. Equations of the proposed reactions are presented in this paper and their thermodynamic and kinetic feasibility are supported by Gibbs energies of reaction and reaction enthalpies.
Zobrazit více v PubMed
Agote I., Coleto J., Gutiérrez M., Sargsyan A., Garcia de Cortazar M., Lagos M.A., Sytschev A. Production of gamma-TiAl based alloy by combustion synthesis+ compaction route, characterization and application. Kov. Mater. 2008;46:87.
Djanarthany S., Viala J.C., Bouix J. An overview of monolithic titanium aluminides based on Ti3Al and TiAl. Mater. Chem. Phys. 2001;72:301–319. doi: 10.1016/S0254-0584(01)00328-5. DOI
Andreev D.E., Sanin V.N., Yukhvid V.I. Cast alloy production on the basis of titanium aluminide with centrifugal SHS method. Inorg. Mater. 2009;45:867–872. doi: 10.1134/S0020168509080081. DOI
Clemens H., Kestler H. Processing and applications of intermetallic γ-TiAl-based alloys. Adv. Eng. Mater. 2000;2:551–570. doi: 10.1002/1527-2648(200009)2:9<551::AID-ADEM551>3.0.CO;2-U. DOI
Uenishi K., Kobayashi K.F. Processing of intermetallic compounds for structural applications at high temperature. Intermetallics. 1996;4:S95–S101. doi: 10.1016/0966-9795(96)00016-7. DOI
Sung S.Y., Kim Y.J. Alpha-case formation mechanism on titanium investment castings. Mat. Sci Eng A. 2005;405:173–177. doi: 10.1016/j.msea.2005.05.092. DOI
Jiang Y., He Y.H., Huang B.Y., Zou J., Huang H., Xu N.P., Liu C.T. Criterion to control self-propagation high temperature synthesis for porous Ti–Al intermetallics. Powder Metall. 2011;54:404–407. doi: 10.1179/003258910X12707304455266. DOI
Lagos M.A., Agote I., San Juan J.M., Hennicke J. Gamma Titanium Aluminide Alloys A Collection of research on Innovation and Commercialization of Gamma Alloy Technology. Wiley; Hoboken, NJ, USA: 2014. Fabrication of TiAl alloys by alternative powder methods; pp. 77–82. DOI
Agote I., Coleto J., Gutiérrez M., Sargsyan A., de Cortazar M.G., Lagos M.A., Vadchenko S.G. Microstructure and mechanical properties of gamma TiAl based alloys produced by combustion synthesis+ compaction route. Intermetallics. 2008;16:1310–1316. doi: 10.1016/j.intermet.2008.08.007. DOI
Kobashi M., Inoguchi N., Kanetake N. Effect of elemental powder blending ratio on combustion foaming behavior of porous Al–Ti intermetallics and Al3Ti/Al composites. Intermetallics. 2010;18:1039–1045. doi: 10.1016/j.intermet.2010.01.034. DOI
Arakawa Y., Kobashi M., Kanetake N. Foaming behavior of long-scale Al–Ti intermetallic foam by SHS mode combustion reaction. Intermetallics. 2013;41:22–27. doi: 10.1016/j.intermet.2013.04.004. DOI
Bertolino N., Monagheddu M., Tacca A., Giuliani P., Zanotti C., Tamburini U.A. Ignition mechanism in combustion synthesis of Ti–Al and Ti–Ni systems. Intermetallics. 2003;11:41–49. doi: 10.1016/S0966-9795(02)00128-0. DOI
Mirjalili M., Soltanieh M., Matsuura K., Ohno M. On the kinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple. Intermetallics. 2013;32:297–302. doi: 10.1016/j.intermet.2012.08.017. DOI
Qin J., Chen G., Wang B., Hu N., Han F., Du Z. Formation of in-situ Al3Ti particles from globular Ti powders and Al alloy melt under ultrasonic vibration. J. Alloys Compd. 2015;653:32–38. doi: 10.1016/j.jallcom.2015.09.005. DOI
Wei N., Han X., Zhang X., Cao Y., Guo C., Lu Z., Jiang F. Characterization and properties of intermetallic Al3Ti alloy synthesized by reactive foil sintering in vacuum. J. Mater. Res. 2016;31:2706–2713. doi: 10.1557/jmr.2016.298. DOI
Ma Y., Fan Q., Zhang J., Shi J., Xiao G., Gu M. Microstructural evolution during self-propagating high-temperature synthesis of Ti-Al system. J. Wuhan Univ. Technol. 2008;23:381–385. doi: 10.1007/s11595-007-3281-6. DOI
Yi H.C., Petric A., Moore J.J. Effect of heating rate on the combustion synthesis of Ti-Al intermetallic compounds. J. Mater. Sci. 1992;27:6797–6806. doi: 10.1007/BF01165971. DOI
Yang W.Y., Weatherly G.C. A study of combustion synthesis of Ti-Al intermetallic compounds. J. Mater. Sci. 1996;31:3707–3713. doi: 10.1007/BF00352784. DOI
Sujata M., Bhargava S., Sangal S. On the formation of TiAl3 during reaction between solid Ti and liquid Al. J. Mater. Sci Lett. 1997;16:1175–1178. doi: 10.1007/BF02765402. DOI
Peng L.M., Wang J.H., Li H., Zhao J.H., He L.H. Synthesis and microstructural characterization of Ti–Al3Ti metal–intermetallic laminate (MIL) composites. Scripta Mater. 2005;52:243–248. doi: 10.1016/j.scriptamat.2004.09.010. DOI
Kamynina O.K., Vadchenko S.G., Sytschev A.E., Rogachev A.S., Umarov L.M., Sachkova N.V. High-porosity TiAl foam by volume combustion synthesis. Int. J. Self-Propagating High-Temp. Synth. 2007;16:137–140. doi: 10.3103/S1061386207030065. DOI
Novák P., Šerák J., Vojtěch D., Kubásek J., Michalcová A. Where reactive sintering beats melt technology. Metal Powder Rep. 2008;63:20–23. doi: 10.1016/S0026-0657(09)70058-X. DOI
Ustinov A.I., Falchenko Y.V., Ishchenko A.Y., Kharchenko G.K., Melnichenko T.V., Muraveynik A.N. Diffusion welding of γ-TiAl based alloys through nano-layered foil of Ti/Al system. Intermetallics. 2008;16:1043–1045. doi: 10.1016/j.intermet.2008.05.002. DOI
Xu L., Cui Y.Y., Hao Y.L., Yang R. Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples. Mat. Sci Eng. A. 2006;435:638–647. doi: 10.1016/j.msea.2006.07.077. DOI
Sun Y.B., Zhao Y.Q., Zhang D., Liu C.Y., Diao H.Y. Multilayered Ti-Al intermetallic sheets fabricated by cold rolling and annealing of titanium and aluminum foils. Trans. Nonferr Metal. Soc. China. 2011;21:1722–1727. doi: 10.1016/S1003-6326(11)60921-7. DOI
Gachon J.C., Rogachev A.S., Grigoryan H.E., Illarionova E.V., Kuntz J.J., Kovalev D.Y., Nosyrev A.N., Sachkova N.V., Tsygankov P.A. On the mechanism of heterogeneous reaction and phase formation in Ti/Al multilayer nanofilms. Acta Mater. 2005;53:1225–1231. doi: 10.1016/j.actamat.2004.11.016. DOI
Luo J.G., Acoff V.L. Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils. Mat. Sci. Eng. A. 2004;379:164–172. doi: 10.1016/j.msea.2004.01.021. DOI
Massalski T.B. Binary Alloy Phase Diagrams. 2nd ed. ASM International; Materials Park, OH, USA: 1990.
Xiong X., Huang B. The process and mechanism of TiAl-Based alloy synthesized from Ti and Al powders. J. Cent. South. Univ. Technol. 1995;2:8–11. doi: 10.1007/BF02651999. DOI
Školáková A., Salvetr P., Novák P., Vojtěch D. Formation of Ti-Al phases during SHS process. Acta Phys Pol. A. 2018;134:743–747. doi: 10.12693/APhysPolA.134.743. DOI
Kattner U.R., Lin J.C., Chang Y.A. Thermodynamic assessment and calculations of the Ti-Al system. Metall. Mater. Trans. A. 1992;23:2081–2090. doi: 10.1007/BF02646001. DOI
Školáková A., Leitner J., Salvetr P., Novák P., Deduytsche D., Kopeček J., Detavernier C., Vojtěch D. Kinetic and thermodynamic description of intermediary phases formation in Ti-Al system during reactive sintering. Mater. Chem. Phys. 2019;230:122–130. doi: 10.1016/j.matchemphys.2019.03.062. DOI
Formation of Phases in Reactively Sintered TiAl3 Alloy
Advanced Powder Metallurgy Technologies