Formation of Phases in Reactively Sintered TiAl3 Alloy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
A1_FCHT_2020_003
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32326158
PubMed Central
PMC7221769
DOI
10.3390/molecules25081912
PII: molecules25081912
Knihovny.cz E-zdroje
- Klíčová slova
- Ti-Al system, combustion, kinetics, microstructure, reactive sintering,
- MeSH
- chemické modely MeSH
- difrakce rentgenového záření MeSH
- hliník chemie MeSH
- slitiny chemie MeSH
- testování materiálů MeSH
- titan chemie MeSH
- tranzitní teplota MeSH
- vysoká teplota MeSH
- vytápění MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hliník MeSH
- slitiny MeSH
- titan MeSH
This work highlights new results on the synthesis of the TiAl3 intermetallic phase using self-propagating high-temperature synthesis. This method is considered a promising sintering route for intermetallic compounds. It was found that the reactions proceed in two stages. Below the melting point of aluminum, the Ti2Al5 phase forms at 450 °C after long annealing times by a direct solid-state reaction between the aluminum and titanium, and is converted consequently to TiAl3. This is a completely new finding; until now, many authors have believed in the preferential formation of the TiAl3 phase. The second stage, the self-propagating strongly exothermic reaction, proceeds above the melting point of aluminum. It leads to the formation of the TiAl3 phase accompanied by Ti2Al5 and Ti3Al phases. The reaction mechanism was shown in the form of chemical equations, which were supported by calculating Gibbs energy. Reaction temperatures (Tonset, Tmaximum, and Toffset) were determined after induction heating thanks to recording by an optical pyrometer. This finding provides completely new opportunities for the determination of activation energy at heating rates, in which common calorimeters are not able to detect a response or even measure. Now, the whole procedure will become accessible.
Zobrazit více v PubMed
Bewlay B.P., Nag S., Suzuki A., Weimer M.J. TiAl alloys in commercial aircraft engines. Mater. High. Temp. 2016;33:549–559. doi: 10.1080/09603409.2016.1183068. DOI
Hashimoto K., Kimura M., Suyama R. Nippon Steel Technical Report. Volume 62 Nippon Steel Corporation; Tokyo, Japan: 1994. Alloy design of gamma titanium aluminide intermetallic compound.
Li X.-W., Sun H.-F., Fang W.-B., Ding Y.-F. Structure and morphology of Ti-Al composite powders treated by mechanical alloying. Trans. Nonferr. Metals Soc. 2011;21:s338–s341. doi: 10.1016/S1003-6326(11)61602-6. DOI
Kattner U.R., Lin J.-C., Chang Y.A. Thermodynamic Assessment and Calculation of the Ti-Al System. Metall. Trans. A. 1992;23:2081–2090. doi: 10.1007/BF02646001. DOI
Yang W.Y., Weatherly G.C. A study of combustion synthesis of Ti-Al intermetallic compounds. J. Mater. Sci. 1996;31:3707–3713. doi: 10.1007/BF00352784. DOI
Yi H.C., Petric A., Moore J.J. Effect of heating rate on the combustion synthesis of Ti-Al intermetallic compounds. J. Mater. Sci. 1992;27:6797–6806. doi: 10.1007/BF01165971. DOI
Wang T., Lu Y.X., Zhu M.L., Zhang J.S., Ji S.J. DSC Research on Critical Temperature in Thermal Explosion Synthesis Reaction Ti+3Al→TiAl3. J. Therm. Anal. Calorim. 2002;67:605–611. doi: 10.1023/A:1014396519616. DOI
Ma Y., Fan Q., Zhang J., Shi J., Xiao G., Gu M. Microstructural evolution during self-propagating high-temperature synthesis of Ti-Al system. J. Wuhan Univ. Technol. 2008;23:381–385. doi: 10.1007/s11595-007-3281-6. DOI
Agote I., Coleto J., Gutiérrez M., Sargsyan A., García de Cortazar M., Lagos M.A., Borovinskaya I.P., Sytschev A.E., Kvanin V.L., Balikhina N.T., et al. Microstructure and mechanical properties of gamma TiAl based alloys produced by combustion synthesis+compaction route. Intermetallics. 2008;16:1310–1316. doi: 10.1016/j.intermet.2008.08.007. DOI
Whitney M., Corbin S.F., Gorbet R.B. Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis. Acta Mater. 2008;56:559–570. doi: 10.1016/j.actamat.2007.10.012. DOI
Bertolino N., Monagheddu M., Tacca A., Giuliani P., Zanotti C., Anselmi Tamburini U. Ignition mechanism in combustion synthesis of Ti–Al and Ti–Ni systems. Intermetallics. 2003;11:41–49. doi: 10.1016/S0966-9795(02)00128-0. DOI
Sujata M., Bhargava S., Sangal S. On the formation of TiAl3 during reaction between solid Ti and liquid Al. J. Mater. Sci. Lett. 1997;16:1175–1178. doi: 10.1007/BF02765402. DOI
Hwang C.-C., Chung S.-L. A study of combustion synthesis reaction in the Ti + C/Ti + Al system. J. Mater. Sci. 2004;39:2073–2080. doi: 10.1023/B:JMSC.0000017769.40870.8d. DOI
Peng L.M., Wang J.H., Li H., Zhao J.H., He L.H. Synthesis and microstructural characterization of Ti–Al3Ti metal–intermetallic laminate (MIL) composites. Scripta Mater. 2005;52:243–248. doi: 10.1016/j.scriptamat.2004.09.010. DOI
Školáková A., Leitner J., Salvetr P., Novák P., Deduytsche D., Kopeček J., Detavernier C., Vojtěch D. Kinetic and thermodynamic description of intermediary phases formation in Ti-Al system during reactive sintering. Mater. Chem. Phys. 2019;230:122–130. doi: 10.1016/j.matchemphys.2019.03.062. DOI
Školáková A., Salvetr P., Novák P., Leitner J., Deduytsche D. Mechanism of the Intermediary Phase Formation in Ti-20 wt. % Al Mixture during Pressureless Reactive Sintering. Materials. 2019;12:2171. doi: 10.3390/ma12132171. PubMed DOI PMC
Massalski T.B. Binary alloy phase diagrams. ASM Int. 1992;3:2874.
Kissinger H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957;29:1702–1706. doi: 10.1021/ac60131a045. DOI
Adeli M., Seyedein S.H., Aboutalebi M.R., Kobashi M., Kanetake N. A study on the combustion synthesis of titanium aluminide in the self-propagating mode. J. Alloy Compd. 2010;497:100–104. doi: 10.1016/j.jallcom.2010.03.050. DOI
Arakawa Y., Kobashi M., Kanetake N. Foaming behavior of long-scale Al–Ti intermetallic foam by SHS mode combustion reaction. Intermetallics. 2013;41:22–27. doi: 10.1016/j.intermet.2013.04.004. DOI
Mirjalili M., Soltanieh M., Matsuura K., Ohno M. On the kinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple. Intermetallics. 2013;32:297–302. doi: 10.1016/j.intermet.2012.08.017. DOI
Školáková A., Salvetr P., Novák P., Vojtěch D. Formation of Ti-Al phases during SHS process. Acta Phys. Pol. A. 2018;134:743–747. doi: 10.12693/APhysPolA.134.743. DOI
Feng G.-J., Li Z.-R., Liu R.-H., Feng S.-C. Effects of Joining Conditions on Microstructure and Mechanical Properties of Cf/Al Composites and TiAl Alloy Combustion Synthesis Joints. Acta Metall. Sin.-Engl. 2015;28:405–413. doi: 10.1007/s40195-015-0209-9. DOI
Jiang S.Y., Li S.-C., Zhang L. Microstructure evolution of Al–Ti liquid–solid interface. Trans. Nonferr. Metals Soc. 2013;23:3545–3552. doi: 10.1016/S1003-6326(13)62899-X. DOI
Sina H., Iyengar S. Reactive synthesis and characterization of titanium aluminides produced from elemental powder mixtures. J. Therm. Anal. Calorim. 2015;122:689–698. doi: 10.1007/s10973-015-4815-6. DOI
Yu S., Zhipeng W., Lianxi H., Binghua W., Taiqing D. Characterization on Solid Phase Diffusion Reaction Behavior and Diffusion Reaction Kinetic of Ti/Al. Rare Metal. Matal Eng. 2017;46:2080–2086. doi: 10.1016/S1875-5372(17)30183-2. DOI