In vitro antioxidant enzyme activity and sperm motility at different temperatures in sterlet Acipenser ruthenus and rainbow trout Oncorhynchus mykiss

. 2019 Dec ; 45 (6) : 1791-1800. [epub] 20190708

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31286338

Grantová podpora
CZ.1.05/2.1.00/01.0024 Ministry of Education, Youth and Sports of the Czech Republic
CENAKVA II (No. LO1205 under the NPU I program Ministry of Education, Youth and Sports of the Czech Republic
LO1205 under the NPU I program CENAKVA II
CZ.02.1.01./0.0/0.0/16_025/0007370 Reproductive and Genetic Procedures for Preserving Fish Biodiversity
(125/2016/Z) Grant Agency of the University of South Bohemia in Ceske Budejovice
QK1710310 NAZV

Odkazy

PubMed 31286338
DOI 10.1007/s10695-019-00675-w
PII: 10.1007/s10695-019-00675-w
Knihovny.cz E-zdroje

Influence of in vitro temperature on sperm antioxidant enzyme activity, thiobarbituric acid-reactive substance (TBARS) content and motility parameters was evaluated in sterlet Acipenser ruthenus and rainbow trout Oncorhynchus mykiss. Sperm activation was conducted at 4, 14 and 24 °C in both species. Duration of motility was significantly longer at 4 °C than at 14 and 24 °C in both species. At 60 s post-activation, the velocity of sterlet spermatozoa was highest at 24 °C. This trend continued to 420 s post-activation. In rainbow trout, at 10 s post-activation, the highest velocity was observed at 14 °C. Significantly higher catalase activity was seen at 4 °C in both species. No significant difference in spermatozoon superoxide dismutase activity among temperatures was observed. In sterlet, TBARS content was significantly higher at 24 °C compared to other temperatures, but, in rainbow trout, it was highest at 4 °C. The results presume species-specific level of antioxidant enzyme activity and TBARS content at studied temperatures.

Zobrazit více v PubMed

Theriogenology. 2006 Sep 1;66(4):822-8 PubMed

Theriogenology. 2006 Jul 15;66(2):373-82 PubMed

J Fish Biol. 2012 Jul;81(1):197-209 PubMed

J Therm Biol. 2016 Jul;59:64-8 PubMed

Anim Reprod Sci. 2010 Jun;119(3-4):314-21 PubMed

Comp Biochem Physiol A Mol Integr Physiol. 2013 Oct;166(2):237-43 PubMed

Cell Biol Int. 2005 Feb;29(2):101-10 PubMed

Aquat Toxicol. 2011 Jan 17;101(1):13-30 PubMed

Comp Biochem Physiol C Toxicol Pharmacol. 2006 May;143(1):36-41 PubMed

J Androl. 2002 Nov-Dec;23(6):737-52 PubMed

Eur J Biochem. 1974 Sep 16;47(3):469-74 PubMed

J Androl. 1987 Sep-Oct;8(5):338-48 PubMed

Eur J Biochem. 1987 Aug 3;166(3):667-71 PubMed

J Cell Sci. 1995 Feb;108 ( Pt 2):747-53 PubMed

Fish Physiol Biochem. 2015 Apr;41(2):413-22 PubMed

Urology. 1996 Dec;48(6):835-50 PubMed

Nanomedicine (Lond). 2015;10(17):2709-23 PubMed

J Androl. 1995 Nov-Dec;16(6):464-8 PubMed

Anal Biochem. 1976 May 7;72:248-54 PubMed

Biol Reprod. 1982 May;26(4):673-82 PubMed

J Androl. 2004 Jan-Feb;25(1):5-18 PubMed

Anim Reprod Sci. 2011 Jun;126(1-2):122-9 PubMed

J Anim Sci. 2015 Nov;93(11):5214-21 PubMed

J Exp Zool. 1999 Sep 1;284(4):454-65 PubMed

Biol Reprod. 1985 Mar;32(2):342-51 PubMed

Clin Biochem. 2011 Mar;44(4):319-24 PubMed

J Gerontol. 1981 Jul;36(4):405-9 PubMed

Theriogenology. 2001 Feb 1;55(3):751-69 PubMed

Fish Physiol Biochem. 2009 Nov;35(4):661-8 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...