A role for the Saccharomyces cerevisiae ABCF protein New1 in translation termination/recycling
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31299085
PubMed Central
PMC7145556
DOI
10.1093/nar/gkz600
PII: 5531767
Knihovny.cz E-zdroje
- MeSH
- ABC transportéry chemie genetika metabolismus MeSH
- arginin metabolismus MeSH
- delece genu MeSH
- Escherichia coli genetika metabolismus MeSH
- exprese genu MeSH
- genetické vektory chemie metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- klonování DNA MeSH
- kodon chemie metabolismus MeSH
- konformace proteinů, alfa-helix MeSH
- konformace proteinů, beta-řetězec MeSH
- lysin metabolismus MeSH
- molekulární modely MeSH
- priony chemie genetika metabolismus MeSH
- regulace genové exprese u hub * MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- ribozomy genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny chemie genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- sekvenční seřazení MeSH
- terminace translace peptidového řetězce * MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ABC transportéry MeSH
- arginin MeSH
- kodon MeSH
- lysin MeSH
- New1 protein, S cerevisiae MeSH Prohlížeč
- priony MeSH
- rekombinantní proteiny MeSH
- Saccharomyces cerevisiae - proteiny MeSH
Translation is controlled by numerous accessory proteins and translation factors. In the yeast Saccharomyces cerevisiae, translation elongation requires an essential elongation factor, the ABCF ATPase eEF3. A closely related protein, New1, is encoded by a non-essential gene with cold sensitivity and ribosome assembly defect knock-out phenotypes. Since the exact molecular function of New1 is unknown, it is unclear if the ribosome assembly defect is direct, i.e. New1 is a bona fide assembly factor, or indirect, for instance due to a defect in protein synthesis. To investigate this, we employed yeast genetics, cryo-electron microscopy (cryo-EM) and ribosome profiling (Ribo-Seq) to interrogate the molecular function of New1. Overexpression of New1 rescues the inviability of a yeast strain lacking the otherwise strictly essential translation factor eEF3. The structure of the ATPase-deficient (EQ2) New1 mutant locked on the 80S ribosome reveals that New1 binds analogously to the ribosome as eEF3. Finally, Ribo-Seq analysis revealed that loss of New1 leads to ribosome queuing upstream of 3'-terminal lysine and arginine codons, including those genes encoding proteins of the cytoplasmic translational machinery. Our results suggest that New1 is a translation factor that fine-tunes the efficiency of translation termination or ribosome recycling.
Central European Institute of Technology Masaryk University Kamenice 5 62500 Brno Czech Republic
School of Life Science University of Sussex Brighton BN19RH UK
University of Tartu Institute of Technology 50411 Tartu Estonia
Zobrazit více v PubMed
Rodnina M.V., Wintermeyer W.. Protein elongation, co-translational folding and targeting. J. Mol. Biol. 2016; 428:2165–2185. PubMed
Simonetti A., Marzi S., Jenner L., Myasnikov A., Romby P., Yusupova G., Klaholz B.P., Yusupov M.. A structural view of translation initiation in bacteria. Cell Mol. Life Sci. 2009; 66:423–436. PubMed PMC
Hinnebusch A.G. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 2014; 83:779–812. PubMed
Dever T.E., Green R.. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb. Perspect. Biol. 2012; 4:a013706. PubMed PMC
Atkinson G.C. The evolutionary and functional diversity of classical and lesser-known cytoplasmic and organellar translational GTPases across the tree of life. BMC Genomics. 2015; 16:78. PubMed PMC
Maracci C., Rodnina M.V.. Review: translational GTPases. Biopolymers. 2016; 105:463–475. PubMed PMC
Paytubi S., Wang X., Lam Y.W., Izquierdo L., Hunter M.J., Jan E., Hundal H.S., Proud C.G.. ABC50 promotes translation initiation in mammalian cells. J. Biol. Chem. 2009; 284:24061–24073. PubMed PMC
Qu L., Jiang Y., Cheng C., Wu D., Meng B., Chen Z., Zhu Y., Shaw N., Ouyang S., Liu Z.J.. Crystal structure of ATP-bound human ABCF1 demonstrates a unique conformation of ABC proteins. Structure. 2018; 26:1259–1265. PubMed
Andersen C.B., Becker T., Blau M., Anand M., Halic M., Balar B., Mielke T., Boesen T., Pedersen J.S., Spahn C.M. et al. .. Structure of eEF3 and the mechanism of transfer RNA release from the E-site. Nature. 2006; 443:663–668. PubMed
Sandbaken M.G., Lupisella J.A., DiDomenico B., Chakraburtty K.. Protein synthesis in yeast. Structural and functional analysis of the gene encoding elongation factor 3. J. Biol. Chem. 1990; 265:15838–15844. PubMed
Vazquez de Aldana C.R., Marton M.J., Hinnebusch A.G.. GCN20, a novel ATP binding cassette protein, and GCN1 reside in a complex that mediates activation of the eIF-2 alpha kinase GCN2 in amino acid-starved cells. EMBO J. 1995; 14:3184–3199. PubMed PMC
Ross-Smith N., Tan P., Belfield G., Tuite M.F.. Translational elongation factor 3 (EF-3): a study of its structural and functional divergence in fungi. Biochem. Soc. Trans. 1995; 23:132S. PubMed
Mateyak M.K., Pupek J.K., Garino A.E., Knapp M.C., Colmer S.F., Kinzy T.G., Dunaway S.. Demonstration of translation elongation factor 3 activity from a non-fungal species, Phytophthora infestans. PLoS One. 2018; 13:e0190524. PubMed PMC
Murina V., Kasari M., Takada H., Hinnu M., Saha C.K., Grimshaw J.W., Seki T., Reith M., Putrinš M., Tenson T. et al. .. ABCF ATPases involved in protein synthesis, ribosome assembly and antibiotic Resistance: Structural and functional diversification across the tree of life. J. Mol. Biol. 2018; doi:10.1016/j.jmb.2018.12.013. PubMed PMC
Hutchison J.S., Feinberg B., Rothwell T.C., Moldave K.. Monoclonal antibody specific for yeast elongation factor 3. Biochemistry. 1984; 23:3055–3063. PubMed
Uritani M., Miyazaki M.. Role of yeast peptide elongation factor 3 (EF-3) at the AA-tRNA binding step. J. Biochem. 1988; 104:118–126. PubMed
Kurata S., Nielsen K.H., Mitchell S.F., Lorsch J.R., Kaji A., Kaji H.. Ribosome recycling step in yeast cytoplasmic protein synthesis is catalyzed by eEF3 and ATP. PNAS. 2010; 107:10854–10859. PubMed PMC
Kasari V., Margus T., Atkinson G.C., Johansson M.J.O., Hauryliuk V.. Ribosome profiling analysis of eEF3-depleted Saccharomyces cerevisiae. Sci. Rep. 2019; 9:3037. PubMed PMC
Triana-Alonso F.J., Chakraburtty K., Nierhaus K.H.. The elongation factor 3 unique in higher fungi and essential for protein biosynthesis is an E site factor. J. Biol. Chem. 1995; 270:20473–20478. PubMed
Decottignies A., Goffeau A.. Complete inventory of the yeast ABC proteins. Nat. Genet. 1997; 15:137–145. PubMed
Maurice T.C., Mazzucco C.E., Ramanathan C.S., Ryan B.M., Warr G.A., Puziss J.W.. A highly conserved intraspecies homolog of the Saccharomyces cerevisiae elongation factor-3 encoded by the HEF3 gene. Yeast. 1998; 14:1105–1113. PubMed
Kellis M., Birren B.W., Lander E.S.. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature. 2004; 428:617–624. PubMed
Li Z., Lee I., Moradi E., Hung N.J., Johnson A.W., Marcotte E.M.. Rational extension of the ribosome biogenesis pathway using network-guided genetics. PLoS Biol. 2009; 7:e1000213. PubMed PMC
Santoso A., Chien P., Osherovich L.Z., Weissman J.S.. Molecular basis of a yeast prion species barrier. Cell. 2000; 100:277–288. PubMed
Osherovich L.Z., Weissman J.S.. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion. Cell. 2001; 106:183–194. PubMed
Harrison L.B., Yu Z., Stajich J.E., Dietrich F.S., Harrison P.M.. Evolution of budding yeast prion-determinant sequences across diverse fungi. J. Mol. Biol. 2007; 368:273–282. PubMed
Siibak T., Peil L., Donhofer A., Tats A., Remm M., Wilson D.N., Tenson T., Remme J.. Antibiotic-induced ribosomal assembly defects result from changes in the synthesis of ribosomal proteins. Mol. Microbiol. 2011; 80:54–67. PubMed
Amberg D.C., Burke D., Strathern J.N.. Methods in Yeast Genetics: a Cold Spring Harbor Laboratory Course Manual. 2005; NY: CSHL Press.
Johansson M.J. Determining if an mRNA is a substrate of nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Methods Mol. Biol. 2017; 1507:169–177. PubMed
Longtine M.S., McKenzie A. 3rd, Demarini D.J., Shah N.G., Wach A., Brachat A., Philippsen, Pringle J.R.. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 1998; 14:953–961. PubMed
Ottoz D.S., Rudolf F., Stelling J.. Inducible, tightly regulated and growth condition-independent transcription factor in Saccharomyces cerevisiae. Nucleic Acids Res. 2014; 42:e130. PubMed PMC
Antoun A., Pavlov M.Y., Tenson T., Ehrenberg M.M.. Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering. Biol. Proced. Online. 2004; 6:35–54. PubMed PMC
Chilkova O., Jonsson B.H., Johansson E.. The quaternary structure of DNA polymerase epsilon from Saccharomyces cerevisiae. J. Biol. Chem. 2003; 278:14082–14086. PubMed
Grant T., Grigorieff N.. Measuring the optimal exposure for single particle cryo-EM using a 2.6 A reconstruction of rotavirus VP6. Elife. 2015; 4:e06980. PubMed PMC
Zhang K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 2016; 193:1–12. PubMed PMC
Kimanius D., Forsberg B.O., Scheres S.H., Lindahl E.. Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. Elife. 2016; 5:e18722. PubMed PMC
Zivanov J., Nakane T., Forsberg B.O., Kimanius D., Hagen W.J., Lindahl E., Scheres S.H.. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife. 2018; 7:e42166. PubMed PMC
Adams P.D., Afonine P.V., Bunkoczi G., Chen V.B., Davis I.W., Echols N., Headd J.J., Hung L.W., Kapral G.J., Grosse-Kunstleve R.W. et al. .. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010; 66:213–221. PubMed PMC
Scheres S.H., Chen S.. Prevention of overfitting in cryo-EM structure determination. Nat. Methods. 2012; 9:853–854. PubMed PMC
Bienert S., Waterhouse A., de Beer T.A., Tauriello G., Studer G., Bordoli L., Schwede T.. The SWISS-MODEL repository-new features and functionality. Nucleic Acids Res. 2017; 45:D313–D319. PubMed PMC
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E.. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 2004; 25:1605–1612. PubMed
Emsley P., Cowtan K.. Coot: model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr. 2004; 60:2126–2132. PubMed
Crowe-McAuliffe C., Graf M., Huter P., Takada H., Abdelshahid M., Novacek J., Murina V., Atkinson G.C., Hauryliuk V., Wilson D.N.. Structural basis for antibiotic resistance mediated by the Bacillus subtilis ABCF ATPase VmlR. PNAS. 2018; 115:8978–8983. PubMed PMC
Brown A., Long F., Nicholls R.A., Toots J., Emsley P., Murshudov G.. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. Sect. D Biol. Crystallogr. 2015; 71:136–153. PubMed PMC
Chen V.B., Arendall W.B. 3rd, Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C.. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010; 66:12–21. PubMed PMC
Goddard T.D., Huang C.C., Meng E.C., Pettersen E.F., Couch G.S., Morris J.H., Ferrin T.E.. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci. 2018; 27:14–25. PubMed PMC
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011; 17:10–12.
Pertea M., Kim D., Pertea G.M., Leek J.T., Salzberg S.L.. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016; 11:1650–1667. PubMed PMC
Anders S., Pyl P.T., Huber W.. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015; 31:166–169. PubMed PMC
Love M.I., Huber W., Anders S.. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15:550. PubMed PMC
Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T. et al. .. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000; 25:25–29. PubMed PMC
Mi H., Huang X., Muruganujan A., Tang H., Mills C., Kang D., Thomas P.D.. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 2017; 45:D183–D189. PubMed PMC
Mumberg D., Muller R., Funk M.. Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 1994; 22:5767–5768. PubMed PMC
Böel G., Smith P.C., Ning W., Englander M.T., Chen B., Hashem Y., Testa A.J., Fischer J.J., Wieden H.J., Frank J. et al. .. The ABC-F protein EttA gates ribosome entry into the translation elongation cycle. Nat. Struct. Mol. Biol. 2014; 21:143–151. PubMed PMC
Rigaut G., Shevchenko A., Rutz B., Wilm M., Mann M., Seraphin B.. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 1999; 17:1030–1032. PubMed
Heuer A., Gerovac M., Schmidt C., Trowitzsch S., Preis A., Kotter P., Berninghausen O., Becker T., Beckmann R., Tampe R.. Structure of the 40S-ABCE1 post-splitting complex in ribosome recycling and translation initiation. Nat. Struct. Mol. Biol. 2017; 24:453–460. PubMed
Karcher A., Schele A., Hopfner K.P.. X-ray structure of the complete ABC enzyme ABCE1 from Pyrococcus abyssi. J. Biol. Chem. 2008; 283:7962–7971. PubMed
Ingolia N.T., Hussmann J.A., Weissman J.S.. Ribosome profiling: global views of translation. Cold Spring Harb. Perspect. Biol. 2018; 11:a032698. PubMed PMC
Wu C.C., Zinshteyn B., Wehner K.A., Green R.. High-Resolution ribosome profiling defines discrete ribosome elongation states and translational regulation during cellular stress. Mol. Cell. 2019; 73:959–970. PubMed PMC
Lareau L.F., Hite D.H., Hogan G.J., Brown P.O.. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. Elife. 2014; 3:e01257. PubMed PMC
Schuller A.P., Wu C.C., Dever T.E., Buskirk A.R., Green R.. eIF5A functions globally in translation elongation and termination. Mol. Cell. 2017; 66:194–205. PubMed PMC
Young D.J., Guydosh N.R., Zhang F., Hinnebusch A.G., Green R.. Rli1/ABCE1 recycles terminating ribosomes and controls translation reinitiation in 3′UTRs in vivo. Cell. 2015; 162:872–884. PubMed PMC
Baudin-Baillieu A., Legendre R., Kuchly C., Hatin I., Demais S., Mestdagh C., Gautheret D., Namy O.. Genome-wide translational changes induced by the prion [PSI+]. Cell Rep. 2014; 8:439–448. PubMed
Susorov D., Mikhailova T., Ivanov A., Sokolova E., Alkalaeva E.. Stabilization of eukaryotic ribosomal termination complexes by deacylated tRNA. Nucleic Acids Res. 2015; 43:3332–3343. PubMed PMC
Keeling K.M., Lanier J., Du M., Salas-Marco J., Gao L., Kaenjak-Angeletti A., Bedwell D.M.. Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA. 2004; 10:691–703. PubMed PMC
O'Shea J.P., Chou M.F., Quader S.A., Ryan J.K., Church G.M., Schwartz D.. pLogo: a probabilistic approach to visualizing sequence motifs. Nat. Methods. 2013; 10:1211–1212. PubMed
Kispal G., Sipos K., Lange H., Fekete Z., Bedekovics T., Janaky T., Bassler J., Aguilar Netz D.J., Balk J., Rotte C. et al. .. Biogenesis of cytosolic ribosomes requires the essential iron-sulphur protein Rli1p and mitochondria. EMBO J. 2005; 24:589–598. PubMed PMC
Pisarev A.V., Skabkin M.A., Pisareva V.P., Skabkina O.V., Rakotondrafara A.M., Hentze M.W., Hellen C.U., Pestova T.V.. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol. Cell. 2010; 37:196–210. PubMed PMC
Lebaron S., Schneider C., van Nues R.W., Swiatkowska A., Walsh D., Bottcher B., Granneman S., Watkins N.J., Tollervey D.. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nat. Struct. Mol. Biol. 2012; 19:744–753. PubMed PMC
Pestova T.V., Lomakin I.B., Lee J.H., Choi S.K., Dever T.E., Hellen C.U.. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature. 2000; 403:332–335. PubMed
Miluzio A., Beugnet A., Volta V., Biffo S.. Eukaryotic initiation factor 6 mediates a continuum between 60S ribosome biogenesis and translation. EMBO Rep. 2009; 10:459–465. PubMed PMC
Inoue Y., Kawai-Noma S., Koike-Takeshita A., Taguchi H., Yoshida M.. Yeast prion protein New1 can break Sup35 amyloid fibrils into fragments in an ATP-dependent manner. Genes Cells. 2011; 16:545–556. PubMed
Boeke J.D., LaCroute F., Fink G.R.. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 1984; 197:345–346. PubMed
Brachmann C.B., Davies A., Cost G.J., Caputo E., Li J., Hieter P., Boeke J.D.. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998; 14:115–132. PubMed
Ghaemmaghami S., Huh W.K., Bower K., Howson R.W., Belle A., Dephoure N., O'Shea E.K., Weissman J.S.. Global analysis of protein expression in yeast. Nature. 2003; 425:737–741. PubMed
Puig O., Caspary F., Rigaut G., Rutz B., Bouveret E., Bragado-Nilsson E., Wilm M., Seraphin B.. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods. 2001; 24:218–229. PubMed
Sikorski R.S., Hieter P.. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics. 1989; 122:19–27. PubMed PMC
Christianson T.W., Sikorski R.S., Dante M., Shero J.H., Hieter P.. Multifunctional yeast high-copy-number shuttle vectors. Gene. 1992; 110:119–122. PubMed
A unified dinucleotide alphabet describing both RNA and DNA structures