Different Nutritional Histories Affect the Susceptibility of Algae to Grazing
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31309551
DOI
10.1111/jpy.12901
Knihovny.cz E-zdroje
- Klíčová slova
- cell composition, diatoms, food webs, interspecific communication, selective grazing,
- MeSH
- Copepoda * MeSH
- fytoplankton MeSH
- rozsivky * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We hypothesize that algae with different cell compositions are differently perceived by their predators and consequently subjected to selective grazing. Five populations of the diatom Phaeodactylum tricornutum that differed in organic and elemental composition, but were otherwise identical, were generated by acclimation to distinct growth regimes. The different populations were then mixed in pairs and subjected to predation by either the rotifer Brachionus plicatilis or the copepod Acartia tonsa. The presence of rotifers had no impact on the ratio between any two algal populations. The presence of copepods, however, affected the ratio between algae previously acclimated to a medium containing 1 mM NH4+ and algae acclimated to 0.5 mM NO3- , and to either a lower irradiance or a higher CO2 concentration. We discuss the possible reason for the influence of different nutritional histories on the vulnerability of algae to predators. The differential impact of grazers on the growth of algae with different nutritional histories may result from direct selective grazing (i.e., grazers can detect algae with the most palatable cell composition), alone or combined to an asymmetric utilization of the nutrients regenerated after predation by co-existing algal populations. Our results strongly suggest that the nutritional history of algae can influence the relationships between phytoplankton and grazers and hint at the possibility that algal cell composition is potentially subject to natural selection, because it influences the probability that algae survive predation.
Institute of Microbiology Academy of Sciences of the Czech Republic Algatech Trebon Czech Republic
National Research Council Institute of Marine Science ISMAR Venezia Italy
Zobrazit více v PubMed
Ahlgren, G., Lundstedt, L., Brett, M. & Forsberg, C. 1990. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J. Plankton Res. 12:809-18.
Amin, R. M., Koski, M., Båmstedt, U. & Vidoudez, C. 2011. Strain-related physiological and behavioral effects of Skeletonema marinoi on three common planktonic copepods. Mar. Biol. 158:1965.
Ask, J., Reinikainen, M. & Båmstedt, U. 2006. Variation in hatching success and egg production of Eurytemora affinis (Calanoida, Copepoda) from the Gulf of Bothnia, Baltic Sea, in relation to abundance and clonal differences of diatoms. J. Plankton Res. 28:683-94.
Axler, R. P., Redfield, G. W. & Goldman, C. R. 1981. The importance of regenerated nitrogen to phytoplankton productivity to phytoplankton productivity in a subalpine lake. Ecology 62:345-54.
Barofsky, A., Simonelli, P., Vidoudez, C., Troedsson, C., Nejstgaard, J. C., Jakobsen, H. H. & Pohnert, G. 2009. Growth phase of the diatom Skeletonema marinoi influences the metabolic profile of the cells and the selective feeding of the copepod Calanus spp. J. Plankton Res. 32:263-72.
Bartlett, M. S. 1937. Properties of sufficiency and statistical tests. P. R. Soc. London. A-Mat. 160:268-82.
Berges, J. A., Franklin, D. J. & Harrison, P. J. 2001. Evolution of an artificial seawater medium: Improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37:1138-45.
Boersma, M., Aberle, N., Hantzsche, F. M., Schoo, K. L., Wiltshire, K. H. & Malzahn, A. M. 2008. Nutritional limitation travels up the food chain. Int. Rev. Hydrobiol. 93:479-88.
Bowler, C., Allen, A. E., Badger, J. H., Grimwood, J., Jabbari, K., Kuo, A., Maheswari, U. et al. 2008. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239-44.
Boyd, C. M. 1976. Selection of particle sizes by filter-feeding copepods: A plea for reason. Limnol. Oceanogr. 21:175-80.
Brönmark, C. & Hansson, L. A. 2000. Chemical communication in aquatic systems: an introduction. Oikos 88:103-9.
Carr, W. E. 1988. The molecular nature of chemical stimuli in the aquatic environment. In Atema, J., Fay, R. R., Popper, A. N. & Tavolga, W. N. [Eds.] Sensory Biology of Aquatic Animals. Springer, New York, New York, NY, USA, pp. 3-27.
Checkley, D. M. 1980. The egg production of a marine planktonic copepod in relation to its food supply: laboratory studies. Limnol. Oceanogr. 25:430-46.
Chotiyaputta, C. & Hirayama, K. 1978. Food selectivity of the rotifer Brachionus plicatilis feeding on phytoplankton. Mar. Biol. 45:105-11.
Corner, E. D. S., Head, R. N. & Lindapennycuick, C. K. 1976. On the nutrition and metabolism of zooplankton X. Quantitative aspects of Calanus helgolandicus feeding as a carnivore. J. Mar. Biolog. Assoc. UK 56:345-58.
Corner, E. D. S. & Newell, B. S. 1967. On the nutrition and metabolism of zooplankton IV. The forms of nitrogen excreted by Calanus. J. Mar. Biolog. Assoc. UK 47:113-20.
Coulter Epics XL Flow Cytometer Reference Manual 1998. Beckman Coulter, Inc. 250 S. Kraemer Blvd. Brea, CA 92821.
Day, R. N. & Davidson, M. W. 2009. The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 38:2887-921.
De Bernardi, R. D. & Giussani, G. 1990. Are blue-green algae a suitable food for zooplankton? An overview. In Gulati, R. D., Lammens, E. H. R. R., Meyer, M. L. & van Donk, E. [Eds.], Biomanipulation Tool for Water Management. Springer, Netherlands, Amsterdam, Netherlands, pp. 29-41.
De Martino, A. D., Meichenin, A., Shi, J., Pan, K. & Bowler, C. 2007. Genetic and phenotypic characterization of Phaeodactylum tricornutum (Bacillariophyceae) accessions. J. Phycol. 43:992-1009.
DeMott, W. R. 1986. The role of taste in food selection by freshwater zooplankton. Oecologia 69:334-40.
Domenighini, A. & Giordano, M. 2009. Fourier transform infrared spectroscopy of microalgae as a novel tool for biodiversity studies, species identification, and the assessment of water quality. J. Phycol. 45:522-31.
Donaghay, P. L. & Small, L. F. 1979. Food selection capabilities of the estuarine copepod Acartia clausi. Mar. Biol. 52:137-46.
Dunn, O. J. 1964. Multiple comparisons using rank sums. Technometrics 6:241-52.
Fanesi, A., Raven, J. A. & Giordano, M. 2014. Growth rate affects the responses of the green alga Tetraselmis suecica to external perturbations. Plant, Cell Environ. 37:512-9.
Fernandez, F. 1979. Particle selection in the nauplius of Calanus pacificus. J. Plankton Res. 1:313-28.
Finkel, Z. V. 2016. Silicification in the microalgae. In Borowitzka, M. A., Beardall, J. & Raven, J. A. [Eds.], The Physiology of Microalgae. Springer, Cham, Switzerland, pp. 289-300.
Fontana, A., d'Ippolito, G., Cutignano, A., Miralto, A., Ianora, A., Romano, G. & Cimino, G. 2007. Chemistry of oxylipin pathways in marine diatoms. Int Res J Pure Appl Chem. 79:481-90.
Francius, G., Tesson, B., Dague, E., Martin-Jézéquel, V. & Dufrêne, Y. F. 2008. Nanostructure and nanomechanics of live Phaeodactylum tricornutum morphotypes. Environ. Microbiol. 10:1344-56.
Fraser, A. J., Sargent, J. R. & Gamble, J. C. 1989. Lipid class and fatty acid composition of Calanus finmarchicus (Gunnerus), Pseudocalanus sp. and Temora longicornis Muller from a nutrient-enriched seawater enclosure. J. Exp. Mar. Biol. Ecol. 130:81-92.
Friedman, M. M. & Strickler, J. R. 1975. Chemoreceptors and feeding in calanoid copepods (Arthropoda: Crustacea). Proc. Natl. Acad. Sci. USA 72:4185-8.
Gardner, W. S. & Paffenhöfer, G. A. 1982. Nitrogen regeneration by the subtropical marine copepod Eucalanus pileatus. J. Plankton Res. 4:725-34.
Ge, F., Huang, W., Chen, Z., Zhang, C., Xiong, Q., Bowler, C., Yang, J., Xu, J. & Hu, H. 2014. Methylcrotonyl-CoA carboxylase regulates triacylglycerol accumulation in the model diatom Phaeodactylum tricornutum. Plant Cell 26:1681-97.
Gilbert, J. J. & Bogdan, K. G. 1984. Rotifer grazing: In situ studies on selectivity and rates. In Meyers, D. G. & Strickler, J. R. [Eds.], Trophic Interactions Within Aquatic Ecosystems. AAAS, Boulder, CO, 85:97-133.
Giordano, M., Kansiz, M., Heraud, P., Beardall, J., Wood, B. & McNaughton, D. 2001. Fourier transform infrared spectroscopy as a novel tool to investigate changes in intracellular macromolecular pools in the marine microalga Chaetoceros muellerii (Bacillariophyceae). J. Phycol. 37:271-9.
Giordano, M., Olivieri, C., Ratti, S., Norici, A., Raven, J. A. & Knoll, A. H. 2018. A tale of two eras: phytoplankton composition influenced by oceanic paleochemistry. Geobiology 16:498-506.
Giordano, M. & Ratti, S. 2013. The biomass quality of algae used for CO2 sequestration is highly species-specific and may vary over time. J. Appl. Phycol. 25:1431-4.
Guillard, R. R. L. 1973. Division rates. In Stein, J. R. [Ed.], Handbok of Phycological methods. Culture Methods and Growth Measurements, Cambridge University Press, UK, pp. 289-311.
Gulati, R. & Demott, W. 1997. The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshw. Biol. 38:753-68.
Hamm, C. E., Merkel, R., Springer, O., Jurkojc, P., Maier, C., Prechtel, K. & Smetacek, V. 2003. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841-3.
Hamm, C. & Smetacek, V. 2007. Armor: why, when, and how. In Falkowski, P. & Knoll, A. [Eds.] Evolution of Primary Producers in the Sea. Academic Press, Cambridge, MA, USA, pp. 311-32.
Harvey, H. W. 1955. The Chemistry and Fertility of Sea Waters. Cambridge University Press, Cambridge, UK, 289 pp.
Hassett, R. P. 2004. Supplementation of a diatom diet with cholesterol can enhance copepod egg production rates. Limnol. Oceanogr. 49:488-94.
He, L., Han, X. & Yu, Z. 2014. A rare Phaeodactylum tricornutum cruciform morphotype: culture conditions, transformation and unique fatty acid characteristics. PLoS ONE 9:e93922.
Hessen, D. O., Jensen, T. C., Kyle, M. & Elser, J. J. 2007. RNA responses to N-and P-limitation; reciprocal regulation of stoichiometry and growth rate in Brachionus. Funct. Ecol. 21:956-62.
Hessen, D. O. & Van Donk, E. 1993. Morphological changes in Scenedesmus induced by substances released from Daphnia. Arch. Hydrobiol. 127:129.
Huysman, M. J., Martens, C., Vyverman, W. & De Veylder, L. 2014. Protein degradation during the diatom cell cycle: Annotation and transcriptional analysis of SCF and APC/C ubiquitin ligase genes in Phaeodactylum tricornutum. Mar. Genom. 14:39-46.
Ianora, A., Poulet, S. A. & Miralto, A. 2003. The effects of diatoms on copepod reproduction: a review. Phycologia 42:351-63.
Isari, S., Zervoudaki, S., Peters, J., Papantoniou, G., Pelejero, C. & Saiz, E. 2016. Lack of evidence for elevated CO2-induced bottom-up effects on marine copepods: a dinoflagellate-calanoid prey-predator pair. ICES J. Mar. Sci. 73:650-8.
Jónasdóttir, S. H. 1994. Effects of food quality on the reproductive success of Acartia tonsa and Acartia hudsonica: laboratory observations. Mar. Biol. 121:67-81.
Jónasdóttir, S. H., Visser, A. W. & Jespersen, C. 2009. Assessing the role of food quality in the production and hatching of Temora longicornis eggs. Mar. Ecol. Prog. Ser. 382:139-50.
KaiXian, Q. & Borowitzka, M. A. 1993. Light and nitrogen deficiency effects on the growth and composition of Phaeodactylum tricornutum. Biotechnol. Appl. Biochem. 38:93-103.
Kiørboe, T. 1989. Phytoplankton growth rate and nitrogen content: implications for feeding and fecundity in a herbivorous copepod. Mar. Ecol. Prog. Ser. 55:229-34.
Kiørboe, T. & Tiselius, P. T. 1987. Gut clearance and pigment destruction in a herbivorous copepod, Acartia tonsa, and the determination of in situ grazing rates. J. Plankt. Res. 9:525-34.
Koski, M., Breteler, W. K. & Schogt, N. 1998. Effect of food quality on rate of growth and development of the pelagic copepod Pseudocalanus elongatus (Copepoda, Calanoida). Mar. Ecol. Prog. Ser. 170:169-87.
Kruskal, W. H. & Wallis, W. A. 1952. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47:583-621.
Legendre, L. 1990. The significance of microalgal blooms for fisheries and for the export of particulate organic carbon in oceans. J. Plankton Res. 12:681-99.
Levene, H.. 1961. Robust tests for equality of variances. Contributions to probability and statistics. Essays in honor of Harold Hotelling, pp. 279-92.
Lewin, J. 1966. Silicon metabolism in diatoms. V. Germanium dioxide, a specific inhibitor of diatom growth. Phycologia 6:1-12.
Lewin, J. C., Lewin, R. A. & Philpott, D. E. 1958. Observations on Phaeodactylum tricornutum. Microbiol. 18:418-26.
Liang, Y., Beardall, J. & Heraud, P. 2006. Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). J. Photochem. Photobiol. B Biol. 82:161-72.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-75.
Lürling, M. & Van Donk, E. 1997. Life history consequences for Daphnia pulex feeding on nutrient-limited phytoplankton. Freshw. Biol. 38:693-709.
Maliva, R. G., Knoll, A. H. & Siever, R. 1989. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. Palaios 4:519-32.
Malzahn, A. M., Aberle, N., Clemmesen, C. & Boersma, M. 2007. Nutrient limitation of primary producers affects planktivorous fish condition. Limnol. Oceanogr. 52:2062-71.
Mann, H. B. & Whitney, D. R. 1947. On a test of whether one of two random variables is stochastically larger than the other. Ann. Mat. Stat. 18:50-60.
Marki, A. & Pahlow, M. 2016. Microzooplankton stoichiometric plasticity inferred from modeling mesocosm experiments in the Peruvian Upwelling Region. Front Mar Sci. 3:258.
Marron, A. O., Chappell, H., Ratcliffe, S. & Goldstein, R. E. 2016. A model for the effects of germanium on silica biomineralization in choanoflagellates. J. Royal Soc. Interface 13:20160485.
McCarthy, J. J. & Goldman, J. C. 1979. Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters. Science 203:670-2.
McLachlan, J. 1964. Some considerations of the growth of marine algae in artificial media. Can. J. Microbiol. 10:769-77.
Mueller-Navarra, D. 1995. Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Arch. Hydrobiol. 132:297.
Palmucci, M., Ratti, S. & Giordano, M. 2011. Ecological and evolutionary implications of carbon allocation in marine phytoplankton as a function of nitrogen availability: a Fourier transform infrared spectroscopy approach. J. Phycol. 47:313-23.
Peterson, G. L. 1977. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Annal. Biochem. 83:346-56.
Pohnert, G. 2000. Wound-activated chemical defense in unicellular planktonic algae. Angew. Chem. Int. Ed. Engl. 39:4352-4.
Pohnert, G. 2005. Diatom/copepod interactions in plankton: the indirect chemical defense of unicellular algae. ChemBioChem 6:946-59.
Poulet, S. A., Cueff, A., Wichard, T., Marchetti, J., Dancie, C. & Pohnert, G. 2007. Influence of diatoms on copepod reproduction. III. Consequences of abnormal oocyte maturation on reproductive factors in Calanus helgolandicus. Mar. Biol. 152:415-28.
Poulet, S. A. & Marsot, P. 1978. Chemosensory grazing by marine calanoid copepods (Arthropoda: Crustacea). Science 200:1403-5.
Ratti, S., Knoll, A. H. & Giordano, M. 2011. Did sulfate availability facilitate the evolutionary expansion of chlorophyll a+ c phytoplankton in the oceans? Geobiol. 9:301-12.
Ratti, S., Knoll, A. H. & Giordano, M. 2013. Grazers and phytoplankton growth in the oceans: an experimental and evolutionary perspective. PLoS ONE 8:e77349.
Raven, J. A. & Waite, A. M. 2004. The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytol. 162:45-61.
Redfield, G. W. 1980. The effect of zooplankton on phytoplankton productivity in the epilimnion of a subalpine lake. Hydrobiologia 70:217-24.
Rossoll, D., Bermúdez, R., Hauss, H., Schulz, K. G., Riebesell, U., Sommer, U. & Winder, M. 2012. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE 7:e34737.
Rothhaupt, K. 1990. Differences in particle size-dependent feeding efficiencies of closely related rotifer species. Limnol. Oceanogr. 35:16-23.
RStudio Team 2018. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. URL http://www.rstudio.com/.
Ruan, Z. & Giordano, M. 2017. The use of NH4+ rather than NO3− affects cell stoichiometry, C allocation, photosynthesis and growth in the cyanobacterium Synechococcus sp. UTEX LB 2380, only when energy is limiting. Plant, Cell Environ. 40:227-36.
Ruan, Z., Raven, J. A. & Giordano, M. 2017. In Synechococcus sp. competition for energy between assimilation and acquisition of C and those of N only occurs when growth is light limited. J. Exp. Bot. 68:3829-39.
Runge, J. A. 1988. Should we expect a relationship between primary production and fisheries? The role of copepod dynamics as a filter of trophic variability. Hydrobiologia 167:61-71.
Schaum, C. E. & Collins, S. 2014. Plasticity predicts evolution in a marine alga. Proc. Roy. Soc. B Biol. Sci. 281:20141486.
Schoo, K. L., Malzahn, A. M., Krause, E. & Boersma, M. 2013. Increased carbon dioxide availability alters phytoplankton stoichiometry and affects carbon cycling and growth of a marine planktonic herbivore. Mar. Biol. 160:2145-55.
Shapiro, S. S. & Wilk, M. B. 1965. An analysis of variance test for normality (complete samples). Biometrika 52:591-611.
Sjöqvist, C., Kremp, A., Lindehoff, E., Båmstedt, U., Egardt, J., Gross, S., Jönsson, M. et al. 2014. Effects of grazer presence on genetic structure of a phenotypically diverse diatom population. Microb. Ecol. 67:83-95.
Smetacek, V. 1999. Diatoms and the ocean carbon cycle. Protist 150:25-32.
Snell, T. W. 1998. Chemical ecology of rotifers. Hydrobiologia 387:267-76.
Sterner, R. W. 1986. Herbivores’ direct and indirect effects on algal populations. Science 231:605-7.
Sterner, R. W. 1990. The ratio of nitrogen to phosphorus resupplied by herbivores: zooplankton and the algal competitive arena. Am. Nat. 136:209-29.
Sterner, R. W. & Elser, J. J. 2002. Ecological Stoichiometry: The Biology of Elements From Molecules to the Biosphere. Princeton University Press, Princeton, NJ, USA, 464 pp.
Sterner, R. W. & Robinson, J. L. 1994. Thresholds for growth in Daphnia magna with high and low phosphorus diets. Limnol. Oceanogr. 39:1228-32.
Støttrup, J. G. & Jensen, J. 1990. Influence of algal diet on feeding and egg-production of the calanoid copepod Acartia tonsa Dana. J. Exp. Mar. Biol. Ecol. 141:87-105.
van Tol, H. M., Irwin, A. J. & Finkel, Z. V. 2012. Macroevolutionary trends in silicoflagellate skeletal morphology: the costs and benefits of silicification. Paleobiol. 38:391-402.
Touratier, F., Legendre, L. & Vézina, A. 1999. Model of copepod growth influenced by the food carbon: nitrogen ratio and concentration, under the hypothesis of strict homeostasis. J. Plankton Res. 21:1111-32.
Trommer, G., Pondaven, P., Siccha, M. & Stibor, H. 2012. Zooplankton-mediated nutrient limitation patterns in marine phytoplankton: an experimental approach with natural communities. Mar. Ecol. Prog. Ser. 449:83-94.
Tukey, J. W. 1949. Comparing individual means in the analysis of variance. Biometrics 5:99-114.
Venuleo, M. & Giordano, M. 2018. Intraspecific interactions between algae with different nutritional histories. J. Phycol. 54:423-7.
Venuleo, M., Raven, J. A. & Giordano, M. 2017. Intraspecific chemical communication in microalgae. New Phytol. 215:516-30.
Yongmanitchai, W. A. R. D. & Ward, O. P. 1991. Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl. Environ. Microbiol. 57:419-25.