Efficacy of Origanum syriacum Essential Oil against the Mosquito Vector Culex quinquefasciatus and the Gastrointestinal Parasite Anisakis simplex, with Insights on Acetylcholinesterase Inhibition
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FPI 000044
Università degli Studi di Camerino
RO0418
Ministry of Agriculture of the Czech Republic
PubMed
31311079
PubMed Central
PMC6680750
DOI
10.3390/molecules24142563
PII: molecules24142563
Knihovny.cz E-resources
- Keywords
- anisakiasis, contact toxicity, enzyme inhibition, fumigation toxicity, larvicide, mosquito control, penetration assay,
- MeSH
- Anisakis drug effects MeSH
- Cholinesterase Inhibitors chemistry pharmacology MeSH
- Culex drug effects MeSH
- Cymenes pharmacology MeSH
- Origanum chemistry MeSH
- Mosquito Vectors drug effects MeSH
- Larva drug effects MeSH
- Plant Leaves chemistry MeSH
- Oils, Volatile chemistry pharmacology MeSH
- Plant Oils chemistry pharmacology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- carvacrol MeSH Browser
- Cholinesterase Inhibitors MeSH
- Cymenes MeSH
- Oils, Volatile MeSH
- Plant Oils MeSH
Developing effective and eco-friendly antiparasitic drugs and insecticides is an issue of high importance nowadays. In this study, we evaluated the anthelminthic and insecticidal potential of the leaf essential oil obtained from Origanum syriacum against the L3 larvae of the parasitic nematode Anisakis simplex and larvae and adults of the mosquito Culex quinquefasciatus. Tests on A. simplex were performed by standard larvicidal and penetration assays, while mosquito toxicity was assessed relying on larvicidal, tarsal contact, and fumigation tests. To shed light on the possible mode of action, we analyzed the oil impact as acetylcholinesterase (AChE) inhibitor. This oil was particularly active on L3 larvae of A. simplex, showing a LC50 of 0.087 and 0.067 mg mL-1 after 24 and 48 h treatment, respectively. O. syriacum essential oil was highly effective on both larvae and adults of C. quinquefasciatus, showing LC50 values of 32.4 mg L-1 and 28.1 µg cm-2, respectively. Its main constituent, carvacrol, achieved larvicidal LC50(90) of 29.5 and 39.2 mg L-1, while contact toxicity assays on adults had an LC50(90) of 25.5 and 35.8 µg cm-2, respectively. In fumigation assays, the LC50 was 12.1 µL L-1 after 1 h and decreased to 1.3 µL L-1 in 24 h of exposure. Similarly, the fumigation LC50 of carvacrol was 8.2 µL L-1 after 1 h of exposure, strongly decreasing to 0.8 µL L-1 after 24 h of exposure. These results support the folk usage of Lebanese oregano as an antiparasitic agent, providing new insights about its utilization for developing new effective and eco-friendly nematocidal and insecticidal products.
Crop Research Institute Drnovska 507 110 00 119 99 Prague Czech Republic
Department of Pharmaceutical and Pharmacological Sciences University of Padova 35128 Padova Italy
Department of Veterinary Medicine University of Bari Aldo Moro 70100 Bari Italy
Instituto Agroalimentario de Aragón IA2 50013 Zaragoza Spain
School of Pharmacy University of Camerino via Sant'Agostino 1 62032 Camerino Italy
See more in PubMed
Guardone L., Armani A., Nucera D., Costanzo F., Mattiucci S., Bruschi F. Human anisakiasis in Italy: A retrospective epidemiological study over two decades. Parasite. 2018;25:41. doi: 10.1051/parasite/2018034. PubMed DOI PMC
Herrador Z., Daschner Á., Perteguer M.J., Benito A. Epidemiological scenario of anisakidosis in Spain based on associated hospitalizations: The tipping point of the iceberg. Clin. Infect. Dis. 2018 doi: 10.1093/cid/ciy853. PubMed DOI PMC
Kassai T., Del Campillo M.C., Euzeby J., Gaafar S., Hiepe T., Himonas C.A. Standardized nomenclature of animal parasitic diseases (SNOAPAD) Vet. Parasitol. 1988;29:299–326. doi: 10.1016/0304-4017(88)90148-3. PubMed DOI
Shimamura Y., Muwanwella N., Chandran S., Kandel G., Marcon N. Common symptoms from an uncommon infection: Gastrointestinal anisakiasis. Can. J. Gastroenterol. Hepatol. 2016;2016:5176502. doi: 10.1155/2016/5176502. PubMed DOI PMC
Kilpatrick A.M., Randolph S.E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet. 2012;380:1946–1955. doi: 10.1016/S0140-6736(12)61151-9. PubMed DOI PMC
Otranto D., Dantas-Torres F. Vector-Borne Parasitic Zoonotic Infections in Humans. In: Singh S.K., editor. Human Emerging and Re-emerging Infections. John Wiley & Sons, Inc.; Chichester, UK: 2015. pp. 505–516. DOI
Waltner-Toews D. Zoonoses, One Health and complexity: Wicked problems and constructive conflict. Phil. Trans. R. Soc. B Biol. Sci. 2017;372:20160171. doi: 10.1098/rstb.2016.0171. PubMed DOI PMC
Petersen E., Wilson M.E., Touch S., McCloskey B., Mwaba P., Bates M., Dar O., Mattes F., Kidd M., Ippolito G., et al. Unexpected and rapid spread of Zika virus in the Americas—Implications for public health preparedness for mass gatherings at the 2016 Brazil Olympic Games. Int. J. Infect. Dis. 2015;44:11–15. doi: 10.1016/j.ijid.2016.02.001. PubMed DOI
Benelli G., Duggan M.F. Management of arthropod vector data—Social and ecological dynamics facing the One Health perspective. Acta Trop. 2018;182:80–91. doi: 10.1016/j.actatropica.2018.02.015. PubMed DOI
WHO . Lymphatic Filariasis: Fact Sheet N°102. World Health Organization; Geneva, Switzerland: 2014.
Wilke A.B.B., Beier J.C., Benelli G. Filariasis vector control down-played due to the belief the drugs will be enough—Not true! Entomol. Gen. 2019 doi: 10.1127/entomologia/2019/0776. DOI
Benelli G., Romano D. Mosquito vectors of Zika virus. Entomol. Gen. 2017;36:309–318. doi: 10.1127/entomologia/2017/0496. DOI
Guedes D.R., Paiva M.H., Donato M.M., Barbosa P.P., Krokovsky L., dos SRocha S.W., La Saraiva K., Crespo M.M., Rezende T.M.T., Wallau G.L., et al. Zika virus replication in the mosquito Culex quinquefasciatus in Brazil. Emerg. Microbes Infect. 2017;6:e69. doi: 10.1038/emi.2017.59. PubMed DOI PMC
Van den Hurk A.F., Hall-Mendelin S., Jansen C.C., Higgs S. Zika virus and Culex quinquefasciatus mosquitoes: A tenuous link. Lancet Infect. Dis. 2017;17:1014–1016. doi: 10.1016/S1473-3099(17)30518-2. PubMed DOI
Corbel V., N’guessan R., Brengues C., Chandre F., Djogbenou L., Martin T., Akogbéto M., Hougard J.M., Rowland M. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop. 2007;101:207–216. doi: 10.1016/j.actatropica.2007.01.005. PubMed DOI
Benelli G., Beier J.C. Current vector control challenges in the fight against malaria. Acta Trop. 2017;174:91–96. doi: 10.1016/j.actatropica.2017.06.028. PubMed DOI
Dantas-Torres F., Chomel B.B., Otranto D. Ticks and tick-borne diseases: A One Health perspective. Trends Parasitol. 2012;28:437–446. doi: 10.1016/j.pt.2012.07.003. PubMed DOI
Paternoster G., Tomassone L., Favretto A., Balduzzi G., Tamba M., Chiari M., Lavazza A., Vogler B. Evaluation of One Health practices to tackle zoonoses: The example of the integrated WNV surveillance in Northern Italy; Proceedings of the 8th International Conference on Emerging Zoonoses focusing on Emerging and Transboundary Infectious Diseases; Manhattan, KS, USA. 7–10 May 2017; p. 28.
Isman M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006;51:45–66. doi: 10.1146/annurev.ento.51.110104.151146. PubMed DOI
Stevenson P.C., Isman M.B., Belmain S.R. Pesticidal plants in Africa: A global vision of new biological control products from local uses. Ind. Crop. Prod. 2017;110:2–9. doi: 10.1016/j.indcrop.2017.08.034. DOI
Benelli G., Pavela R. Beyond mosquitoes—Essential oil toxicity and repellency against bloodsucking insects. Ind. Crops Prod. 2018;117:382–392. doi: 10.1016/j.indcrop.2018.02.072. DOI
Benelli G., Pavela R. Repellence of essential oils and selected compounds against ticks—A systematic review. Acta Trop. 2018;179:47–54. doi: 10.1016/j.actatropica.2017.12.025. PubMed DOI
Miresmailli S., Isman M.B. Botanical insecticides inspired by plant—Herbivore chemical interactions. Trends Plant. Sci. 2014;19:29–35. doi: 10.1016/j.tplants.2013.10.002. PubMed DOI
Benelli G. Managing mosquitoes and ticks in a rapidly changing world—Facts and trends. Saudi J. Biol. Sci. 2019 doi: 10.1016/j.sjbs.2018.06.007. PubMed DOI PMC
AlShebly M.M., AlQahtani F.S., Govindarajan M., Gopinath K., Vijayan P., Benelli G. Toxicity of ar-curcumene and epi-β-bisabolol from Hedychium larsenii (Zingiberaceae) essential oil on malaria, chikungunya and St. Louis encephalitis mosquito vectors. Ecotoxicol. Environ. Saf. 2017;137:149–157. doi: 10.1016/j.ecoenv.2016.11.028. PubMed DOI
Giarratana F., Muscolino D., Beninati C., Giuffrida A., Panebianco A. Activity of Thymus vulgaris essential oil against Anisakis larvae. Exp. Parasitol. 2014;142:7–10. doi: 10.1016/j.exppara.2014.03.028. PubMed DOI
Gómez-Rincón C., Langa E., Murillo P., Valero M.S., Berzosa C., López V. Activity of tea tree (Melaleuca alternifolia) essential oil against L3 larvae of Anisakis simplex. BioMed Res. Int. 2014;2014 doi: 10.1155/2014/549510. PubMed DOI PMC
Romero M.C., Navarro M.C., Martín-Sánchez J., Valero A. Peppermint (Mentha piperita) and albendazole against anisakiasis in an animal model. Trop. Med. Int. Health. 2014;19:1430–1436. doi: 10.1111/tmi.12399. PubMed DOI
Gómez-Mateos Pérez M., Navarro Moll C., Merino Espinosa G., Valero López A. Evaluation of different Mediterranean essential oils as prophylactic agents in anisakidosis. Pharm Biol. 2017;55:456–461. doi: 10.1080/13880209.2016.1247880. PubMed DOI PMC
Giarratana F., Muscolino D., Ziino G., Giuffrida A., Marotta S.M., Lo Presti V., Chiofalo V., Panebianco A. Activity of Tagetes minuta Linnaeus (Asteraceae) essential oil against L3 Anisakis larvae type 1. Asian Pac. J. Trop. Med. 2017;10:461–465. doi: 10.1016/j.apjtm.2017.05.005. PubMed DOI
López V., Cascella M., Benelli G., Maggi F., Gómez-Rincón C. Green drugs in the fight against Anisakis simplex—Larvicidal activity and acetylcholinesterase inhibition of Origanum compactum essential oil. Parasitol. Res. 2018;117:861–867. doi: 10.1007/s00436-018-5764-3. PubMed DOI PMC
Ietswaart J.H. A Taxonomic Revision of the Genus Origanum (Labiatae) Leiden University Press; Leiden, The Netherlands: 1980. (Leiden Botanical Series).
Carlström A. New species of Alyssum, Consolida, Origanum and Umblicus from the SE Aegean Sea. Willdenowia. 1984;14:15–26.
Danin A. Two new species of Origanum (Labiatae) from Jordan. Willdenowia. 1990;19:401–404.
Danin A., Künne I. Origanum jordanicum (Labiatae), a New Species from Jordan, and Notes on the Other Species of O. sect. Campanulaticalyx. Willdenowia. 1996;25:601–611.
Duman H., Aytaç Z., Ekici M., Karavelioğulları F.A., Dönmez A.A., Duran A. Three New Species (Labiatae) From Turkey. Flora Mediter. 1996;5:221–228.
Duman H., Başer K.H.C., Aytaç Z. Two New Species and a New Hybrid from Anatolia. Turk. J. Bot. 1998;22:51–55.
Dirmenci T., Yazıcı T., Özcan T., Çelenk Ç., Martin E. A new species and a new natural hybrid of Origanum, L. (Lamiaceae) from the west of Turkey. Turk. J. Bot. 2018;42:73–90. doi: 10.3906/bot-1704-35. DOI
Greuter W., Burdet H.M., Long G. Med-Checklist. Conserv. Jard. Bot. Ville Genkre. 1986;3:308.
Salah S.M., Jäger A.K. Screening of traditionally used Lebanese herbs for neurological activities. J. Ethnopharmacol. 2005;97:145–149. doi: 10.1016/j.jep.2004.10.023. PubMed DOI
El Beyrouthy M., Arnold N.A., Annick D.D., Frederic D. Plants used as remedies antirheumatic and antineuralgic in the traditional medicine of Lebanon. J. Ethnopharmacol. 2008;120:315–334. PubMed
Khoury M., Stien D., Eparvier V., Ouaini N., El Beyrouthy M. Report on the medicinal use of eleven Lamiaceae species in Lebanon and rationalization of their antimicrobial potential by examination of the chemical composition and antimicrobial activity of their essential oils. Evid. Based Complement. Alternat. Med. 2016;2016 doi: 10.1155/2016/2547169. PubMed DOI PMC
Yaniv Z., Dafni A., Friedman J., Palevitch D. Plants used for the treatment of diabetes in Israel. J. Ethnopharmacol. 1987;19:145–151. doi: 10.1016/0378-8741(87)90038-9. PubMed DOI
Darwish R.M., Aburjai T.A. Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant inhibitors on Escherichia coli. BMC Complement. Altern. Med. 2010;10:9. PubMed PMC
Loizzo M.R., Menichini F., Conforti F., Tundis R., Bonesi M., Saab A.M., Statti G.A., de Cindio B., Houghton P.J., Menichini F., et al. Chemical analysis, antioxidant, antiinflammatory and anticholinesterase activities of Origanum ehrenbergii Boiss and Origanum syriacum L. essential oils. Food Chem. 2009;117:174–180. doi: 10.1016/j.foodchem.2009.03.095. DOI
El Gendy A.N., Leonardi M., Mugnaini L., Bertelloni F., Ebani V.V., Nardoni S., Mancianti F., Hendawy S., Omer E., Pistelli L. Chemical composition and antimicrobial activity of essential oil of wild and cultivated Origanum syriacum plants grown in Sinai, Egypt. Ind. Crops Prod. 2015;67:201–207. doi: 10.1016/j.indcrop.2015.01.038. DOI
Viuda-Martos M., El Gendy A.E.N.G., Sendra E., Fernandez-Lopez J., Abd El Razik K.A., Omer E.A., Pérez-Alvarez J.A. Chemical composition and antioxidant and anti-Listeria activities of essential oils obtained from some Egyptian plants. J. Agric. Food Chem. 2010;58:9063–9070. doi: 10.1021/jf101620c. PubMed DOI
Lukas B., Samuel R., Novak J. Oregano or marjoram? The enzyme γ-terpinene synthase affects chemotype formation in the genus Origanum. Isr. J. Plant. Sci. 2010;58:211–220. doi: 10.1560/IJPS.58.3-4.211. DOI
Baser K.H.C., Kurkcuoglu M., Demirci B., Ozek T. The essential oil of Origanum syriacum L. var. sinaicum (Boiss.) Ietswaart. Flavour. Fragr. J. 2003;18:98–99.
Zein S., Awada S., Rachidi S., Hajj A., Krivoruschko E., Kanaan H. Chemical analysis of essential oil from Lebanese wild and cultivated Origanum syriacum L. (Lamiaceae) before and after flowering. J. Med. Plants Res. 2011;5:379–387.
Al Hafi M., El Beyrouthy M., Ouaini N., Stien D., Rutledge D., Chaillou S. Chemical composition and antimicrobial activity of Origanum libanoticum, Origanum ehrenbergii, and Origanum syriacum growing wild in Lebanon. Chem. Biodivers. 2016;13:555–560. doi: 10.1002/cbdv.201500178. PubMed DOI
Traboulsi A.F., Taoubi K., El-Haj S., Bessiere J.M., Rammal S. Insecticidal properties of essential plant oils against the mosquito Culex pipiens molestus (Diptera: Culicidae) Pest. Manag. Sci. 2002;58:491–495. doi: 10.1002/ps.486. PubMed DOI
Kordali S., Emsen B., Yıldırım E. Fumigant toxicity of essential oils from fifteen plant species against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) Egypt. J. Biol. Pest. Co. 2013;23:241–246.
Sener O., Arslan M., Demirel N., Uremis I. Insecticidal effects of some essential oils against the confused flour beetle (Tribolium confusum du Val) (Col.: Tenebrinoidea) in stored wheat. Asian J. Chem. 2009;21:3995.
Tunc I., Berger B.M., Erler F., Dağlı F. Ovicidal activity of essential oils from five plants against two stored-product insects. J. Stored Prod. Res. 2000;36:161–168. doi: 10.1016/S0022-474X(99)00036-3. DOI
Oka Y., Nacar S., Putievsky E., Ravid U., Yaniv Z., Spiegel Y. Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology. 2000;90:710–715. doi: 10.1094/PHYTO.2000.90.7.710. PubMed DOI
Dudai N., Poljakoff-Mayber A., Mayer A.M., Putievsky E., Lerner H.R. Essential oils as allelochemicals and their potential use as bioherbicides. J. Chem. Ecol. 1999;25:1079–1089. doi: 10.1023/A:1020881825669. DOI
Benelli G., Pavela R., Iannarelli R., Petrelli R., Cappellacci L., Cianfaglione K., Afshar F., Nicoletti M., Canale A., Maggi F. Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: Larvicidal effectiveness on the filariasis vector Culex quinquefasciatus Say. Ind. Crops Prod. 2017;96:186–195. doi: 10.1016/j.indcrop.2016.11.059. DOI
Benelli G., Pavela R., Petrelli R., Cappellacci L., Canale A., Senthil-Nathan S., Maggi F. Not just popular spices! Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Ind. Crops Prod. 2018;124:236–243. doi: 10.1016/j.indcrop.2018.07.048. DOI
Benelli G., Pavela R., Giordani C., Casettari L., Curzi G., Cappellacci L., Petrelli R., Maggi F. Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica. Ind. Crop. Prod. 2018;112:668–680. doi: 10.1016/j.indcrop.2017.12.062. DOI
Benelli G., Pavela R., Petrelli R., Cappellacci L., Bartolucci F., Canale A., Maggi F. Origanum syriacum subsp. syriacum: From an ingredient of Lebanese ‘manoushe’to a source of effective and eco-friendly botanical insecticides. Ind. Crop. Prod. 2019;134:26–32.
Romero M.C., Valero A., Martín-Sánchez J., Navarro-Moll M.C. Activity of Matricaria chamomilla essential oil against anisakiasis. Phytomedicine. 2012;19:520–523. doi: 10.1016/j.phymed.2012.02.005. PubMed DOI
Audicana M.T., Kennedy M.W. Anisakis simplex: From Obscure Infectious Worm to Inducer of Immune Hypersensitivity. Clin. Microbiol. Rev. 2008;21:360–379. doi: 10.1128/CMR.00012-07. PubMed DOI PMC
Benelli G., Pavela R., Canale A., Cianfaglione K., Ciaschetti G., Conti F., Nicoletti M., Senthil-Nathan S., Mehlhorn H., Maggi F. Acute larvicidal toxicity of five essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and Pelargonium graveolens) against the filariasis vector Culex quinquefasciatus: Synergistic and antagonistic effects. Parasitol. Int. 2017;66:166–171. doi: 10.1016/j.parint.2017.01.012. PubMed DOI
Marchese A., Orhan I.E., Daglia M., Barbieri R., Di Lorenzo A., Nabavi S.F., Gortzi O., Izadi M., Nabavi S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016;210:402–414. doi: 10.1016/j.foodchem.2016.04.111. PubMed DOI
Sharifi-Rad M., Varoni E.M., Iriti M., Martorell M., Setzer W.N., del Mar Contreras M., Salehi B., Soltani-Nejad A., Rajabi S., Tajbakhsh M., et al. Carvacrol and human health: A comprehensive review. Phytother. Res. 2018;32:1675–1687. doi: 10.1002/ptr.6103. PubMed DOI
Jukic M., Politeo O., Maksimovic M., Milos M., Milos M. In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol and their derivatives thymoquinone and thymohydroquinone. Phytother. Res. 2007;21:259–261. doi: 10.1002/ptr.2063. PubMed DOI
Aazza S., Lyoussi B., Miguel M.G. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules. 2011;16:7672–7690. doi: 10.3390/molecules16097672. PubMed DOI PMC
Pavela R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind. Crop. Prod. 2015;76:174–187. doi: 10.1016/j.indcrop.2015.06.050. DOI
Pavela R., Zabka M., Bednar J., Tříska J., Vrchotová N. New knowledge for yield, composition and insecticidal activity of essential oils obtained from the aerial parts or seeds of fennel (Foeniculum vulgare Mill.) Ind. Crops Prod. 2016;83:275–282. doi: 10.1016/j.indcrop.2015.11.090. DOI
Cheng S.S., Huang C.G., Chen Y.J., Yu J.J., Chen W.J., Chang S.T. Chemical compositions and larvicidal activities of leaf essential oils from two Eucalyptus species. Bioresour. Technol. 2009;100:452–456. doi: 10.1016/j.biortech.2008.02.038. PubMed DOI
Pavela R. Insecticidal properties of Pimpinella anisum essential oils against the Culex quinquefasciatus and the non-target organism Daphnia magna. J. Asia Pac. Entomol. 2014;17:287–293. doi: 10.1016/j.aspen.2014.02.001. DOI
Pavela R. Encapsulation—A convenient way to extend the persistence of the effect of eco-friendly mosquito larvicides. Curr. Org. Chem. 2016;20:2674–2680. doi: 10.2174/1385272820666151026231851. DOI
Pavela R., Benelli G., Pavoni L., Bonacucina G., Cespi G., Cianfaglione K., Bajalan I., Morshedloo M.R., Lupidi G., Romano D., et al. Microemulsions for delivery of Apiaceae essential oils—Towards highly effective and eco-friendly mosquito larvicides? Ind. Crops Prod. 2019;129:631–640. doi: 10.1016/j.indcrop.2018.11.073. DOI
Tabari M.A., Youssefi M.R., Maggi F., Benelli G. Toxic and repellent activity of selected monoterpenoids (thymol, carvacrol and linalool) against the castor bean tick, Ixodes ricinus (Acari: Ixodidae) Vet. Parasitol. 2017;245:86–91. doi: 10.1016/j.vetpar.2017.08.012. PubMed DOI
Pavela R., Benelli G. Essential oils as eco-friendly biopesticides? Challenges and constraints. Trends Plant Sci. 2016;21:1000–1007. doi: 10.1016/j.tplants.2016.10.005. PubMed DOI
Lee K.W., Everts H., Kappert H.J., Yeom K.H., Beynen A.C. Dietary carvacrol lowers body weight gain but improves feed conversion in female broiler chickens. J. Appl. Poult. Res. 2003;12:394–399. doi: 10.1093/japr/12.4.394. DOI
Mattila H.R., Otis G.W., Daley J., Schultz T. Trials of apiguard, a thymol-based miticide part 2. Non-target effects on honey bees. Am. Bee J. 2000;140:68–70.
George D.R., Sparagano O.A.E., Port G., Okello E., Shiei R.S., Guy J.H. Repellence of plant essential oils to Dermanyssus gallinae and toxicity to the non-target invertebrate Tenebrio molitor. Vet. Parasitol. 2009;162:129–134. doi: 10.1016/j.vetpar.2009.02.009. PubMed DOI
Lahlou M. Potential of Origanum compactum as a cercaricide in Morocco. Ann. Trop. Med. Parasitol. 2002;96:587–593. doi: 10.1179/000349802125001447. PubMed DOI
Tong F., Coats J.R. Effects of monoterpenoid insecticides on [3H]-TBOB binding in house fly GABA receptor and 36Cl—Uptake in American cockroach ventral nerve cord. Pestic. Biochem. Physiol. 2010;98:317–324. doi: 10.1016/j.pestbp.2010.07.003. DOI
Enan E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2001;130:325–337. doi: 10.1016/S1532-0456(01)00255-1. PubMed DOI
Govindarajan M., Rajeswary M., Hoti S.L., Benelli G. Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae) Res. Vet. Sci. 2016;104:77–82. doi: 10.1016/j.rvsc.2015.11.011. PubMed DOI
Mouterde P. Nouvelle Flore du Liban et de la Syrie. Volume 3 Dar El-Machreq; Beyrouth, Lebanon: 1984.
Benelli G., Pavela R., Drenaggi E., Maggi F. Insecticidal efficacy of the essential oil of jambú (Acmella oleracea (L.) R.K. Jansen) cultivated in central Italy against filariasis mosquito vectors, houseflies and moth pests. J. Ethnopharmacol. 2019;229:272–279. doi: 10.1016/j.jep.2018.08.030. PubMed DOI
WHO . Report of the Who Informal Consultation on the Evaluation and Testing of Insecticides. WHO; Geneva, Switzerland: 1996. CTD/WHOPES/IC/96.1.
Ellman G.L., Courtney K.D., Andres V., Jr., Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–90. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Abbott W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925;18:265–267. doi: 10.1093/jee/18.2.265a. DOI
Finney D.J. Probit Analysis. Cambridge University; London, UK: 1971. pp. 68–78.
Pavela R., Pavoni L., Bonacucina G., Cespi M., Kavallieratos N.G., Cappellacci L., Petrelli R., Maggi F., Benelli G. Rationale for developing novel mosquito larvicides based on isofuranodiene microemulsions. J. Pest Sci. 2019;92:909–921. doi: 10.1007/s10340-018-01076-3. DOI