Detection of Abundant Non-Haematopoietic Circulating Cancer-Related Cells in Patients with Advanced Epithelial Ovarian Cancer
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31319587
PubMed Central
PMC6678489
DOI
10.3390/cells8070732
PII: cells8070732
Knihovny.cz E-zdroje
- Klíčová slova
- advanced epithelial ovarian cancer, circulating endothelial cells, circulating tumour cells,
- MeSH
- antigeny CD45 metabolismus MeSH
- karcinom krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové cirkulující buňky metabolismus patologie MeSH
- nádory vaječníků krev MeSH
- proteiny WT1 metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD45 MeSH
- nádorové biomarkery MeSH
- proteiny WT1 MeSH
:Background: Current diagnosis and staging of advanced epithelial ovarian cancer (aEOC) has important limitations and better biomarkers are needed. We investigate the performance of non-haematopoietic circulating cells (CCs) at the time of disease presentation and relapse. Methods: Venous blood was collected prospectively from 37 aEOC patients and 39 volunteers. CCs were evaluated using ImageStream TechnologyTM and specific antibodies to differentiate epithelial cells from haematopoetic cells. qRT-PCR from whole blood of relapsed aEOC patients was carried out for biomarker discovery. Results: Significant numbers of CCs (CK+/WT1+/CD45-) were identified, quantified and characterised from aEOC patients compared to volunteers. CCs are abundant in women with newly diagnosed aEOC, prior to any treatment. Evaluation of RNA from the CCs in relapsed aEOC patients (n = 5) against a 79-gene panel revealed several differentially expressed genes compared to volunteers (n = 14). Size differentiation of CCs versus CD45+ haematopoietic cells was not reliable. Conclusion: CCs of non-haematopoetic origin are prevalent, particularly in patients with newly diagnosed aEOC. Exploiting a CC-rich population in aEOC patients offers insights into a part of the circulating microenvironment.
Department Life Sciences Brunel University London Uxbridge UB8 3PH UK
Laboratory of Gene Expression Institute of Biotechnology CAS v v i 252 50 Vestec Czech Republic
Zobrazit více v PubMed
Hou H.W., Warkiani M.E., Khoo B.L., Li Z.R., Soo R.A., Tan D.S.W., Lim W.T., Han J., Bhagat A.A.S., Lim C.T. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 2013;3:1–8. doi: 10.1038/srep01259. PubMed DOI PMC
Dent B.M., Ogle L.F., O’donnell R.L., Hayes N., Malik U., Curtin N.J., Boddy A.V., Plummer E.R., Edmondson R.J., Reeves H.L., et al. High-resolution imaging for the detection and characterisation of circulating tumour cells from patients with oesophageal, hepatocellular, thyroid and ovarian cancers. Int. J. Cancer. 2016;138:206–216. doi: 10.1002/ijc.29680. PubMed DOI PMC
Sieuwerts A., Kraan J., vam der Spoel P., Elstrodt F., Schutte M., Martens J. Anti-Epithelial Cell Adhesion Molecule Antibodies and the Detection of Circulating Normal-Like Breast Tumor Cells. J. Natl. Cancer Inst. 2009;101:61–66. doi: 10.1093/jnci/djn419. PubMed DOI PMC
Trzpis M., McLaughlin P.M., de Leij L.M.F.H., Harmsen M.C. Epithelial Cell Adhesion Molecule—More than a carcinoma marker and adhesion molecule. Am. J. Pathol. 2007;171:386–395. doi: 10.2353/ajpath.2007.070152. PubMed DOI PMC
Polyak K., Weinberg R.A. Transitions between epithelial and mesenchymal states: Acquisition of malignant and stem cell traits. Nat. Rev. Cancer. 2009;9:265–273. doi: 10.1038/nrc2620. PubMed DOI
Giannopoulou L., Kasimir-Bauer S., Lianidou E.S. Liquid biopsy in ovarian cancer: recent advances on circulating tumor cells and circulating tumor DNA. Clin. Chem. Lab. Med. 2018;56:186–197. doi: 10.1515/cclm-2017-0019. PubMed DOI
Marrinucci D., Bethel K., Kolatkar A., Luttgen M., Malchiodi M., Baehring F., Voigt K., Lazar D., Nieva J., Bazhenova L., et al. Fluid Biopsy in Patients with Metastatic Prostate, Pancreatic and Breast Cancers. Phys. Biol. 2012;9:1–19. doi: 10.1088/1478-3975/9/1/016003. PubMed DOI PMC
Phillips K.G., Velasco C.R., Li J., Kolatkar A., Luttgen M., Bethel K., Duggan B., Kuhn P., McCarty O. Optical Quantification of Cellular Mass, Volume, and Density of Circulating Tumor Cells Identified in an Ovarian Cancer Patient. Front. Oncol. 2012;2:1–8. doi: 10.3389/fonc.2012.00072. PubMed DOI PMC
Rogers-Broadway K.-R., Kumar J., Sisu C., Wander G., Mazey E., Jeyaneethi J., Pados G., Tsolakidis D., Klonos E., Grunt T., et al. Differential expression of mTOR components in endometriosis and ovarian cancer: Effects of rapalogues and dual kinase inhibitors on mTORC1 and mTORC2 stoichiometry. Int. J. Mol. Med. 2019;43:47–56. doi: 10.3892/ijmm.2018.3967. PubMed DOI PMC
Travis W.D. Update on small cell carcinoma and its differentiation from squamous cell carcinoma and other non-small cell carcinomas. Mod. Pathol. 2012;25:18–30. doi: 10.1038/modpathol.2011.150. PubMed DOI
Nel I., Baba H.A., Ertle J., Weber F., Sitek B., Eisenacher M. Individual Profiling of Circulating Tumor Cell Composition and Therapeutic Outcome in Patients with Hepatocellular Carcinoma. Transl. Oncol. 2013;6:420–428. doi: 10.1593/tlo.13271. PubMed DOI PMC
Peeling R., Sollis K., Glover H., Crowe S., Landay A., Cheng B., Barnett D., Denny T., Spira T., Stevens W., et al. CD4 enumeration technologies: A systematic review of test performance for determining eligibility for antiretroviral therapy. PLoS ONE. 2015;10:e0115019. doi: 10.1371/journal.pone.0115019. PubMed DOI PMC
Tripathi N., Everds N., Schultze E.A., Irizarry A., Hall R., Provencher A., Aulbach A. Deciphering Sources of Variability in Clinical Pathology: It’s Not Just about the Numbers. Toxicol. Pathol. 2017;45:90–93. doi: 10.1177/0192623316675766. PubMed DOI
Kobel M., Rahimi K., Rambau P., Naugler C., Le Page C., Meunier L. An Immunohistochemical Algorithm for Ovarian Carcinoma Typing. Int. J. Gynaecol. Pathol. 2016;35:430–441. doi: 10.1097/PGP.0000000000000274. PubMed DOI PMC
Rekhi B., Deodhar K., Menon S., Maheshwari A., Bajpai J., Ghosh J., Shylasree S., Gupta S. Napsin A and WT 1 are useful immunohistochemical markers for differentiating clear cell carcinoma ovary from high-grade serous carcinoma. J. Pathol. Microbiol. Immunol. 2017;126:45–55. doi: 10.1111/apm.12784. PubMed DOI
Mancuso P., Burlini A., Pruneri G., Goldhirsch A., Martinelli G., Bertolini F. Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood. 2001;96:3658–3662. doi: 10.1182/blood.V97.11.3658. PubMed DOI
Park S.R., Speranza G., Piekarz R., Wright J., Kinders R.J., Wang L. A multi-histology trial of fostamatinib in patients with advanced colorectal, non-small cell lung, head and neck, thyroid, and renal cell carcinomas, and pheochromocytomas. Cancer Chemother. Pharmacol. 2013;71:981–990. doi: 10.1007/s00280-013-2091-3. PubMed DOI PMC
Kummar S., Guiterrez M.E., Chen A., Turkbey I., Allen D. Phase I Trial of Vandetanib and Bevacizumab Evaluating the VEGF and EGF Signal Transduction Pathways in Adults with Solid Tumours and Lymphomas. Eur. J. Cancer. 2011;47:997–1005. doi: 10.1016/j.ejca.2010.12.016. PubMed DOI PMC
Beereport L.V., Mehra N., Vermaat S.P.J., Zonnenberg B.A., Gebbink M.F.G.B., Voest E.E. Increased levels of viable circuating endothelial cells are an indicator of progressive disease in cancer patients. Ann. Oncol. 2004;15:139–145. doi: 10.1093/annonc/mdh017. PubMed DOI
Antony J., Thiery J.-P., Huang R. Epithelial-to-mesenchymal transition: Lessons from development, insights into cancer and the potential of EMT-subtype based therapeutic intervention. Phys. Biol. 2019;16:041004. doi: 10.1088/1478-3975/ab157a. PubMed DOI
Jazedje T., Perin P., Czeresnia C., Maluf M., Halpern S., Secco M., Bueno D. Human fallopian tube: a new source of multipotent adult mesenchymal stem cells discarded in surgical procedures. J. Transl. Med. 2009;7:46. doi: 10.1186/1479-5876-7-46. PubMed DOI PMC
Sundfeldt K. Cell-cell adhesion in the normal ovary and ovarian tumors of epithelial origin; an exception to the rule. Mol. Cell. Endocrinol. 2003;202:89–96. doi: 10.1016/S0303-7207(03)00068-6. PubMed DOI
Ahmed N., Thompson E., Quinn M. Epithelial–Mesenchymal Interconversions in Normal Ovarian Surface Epithelium and Ovarian Carcinomas: An Exception to the Norm. J. Cell. Physiol. 2007;207:581–588. doi: 10.1002/jcp.21240. PubMed DOI
Yu M., Bardia A., Wittner B., Stott S., Smas M., Ting D. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339:580–584. doi: 10.1126/science.1228522. PubMed DOI PMC
Rosso M., Majem B., Devis L., Lapyckyj L., Besso M.J., Llaurado M. E-cadherin: A determinant molecule associated with ovarian cancer progression, dissemination and aggressiveness. PLoS ONE. 2017;12:e0184439. doi: 10.1371/journal.pone.0184439. PubMed DOI PMC
Dawson S.J., Tsui D.D.W., Murtaza M., Biggs H., Rueda O.M. Analysis of Circulating Tumor DNA to Monitor Metastatic Breast Cancer. N. Engl. J. Med. 2013;368:1199–1209. doi: 10.1056/NEJMoa1213261. PubMed DOI
Freidin M., Freydina D., Leung M., Fernandez A.-M., Nicholson A., Lim E. Circulating tumor DNA outperforms circulating tumor cells for KRAS mutation detection in thoracic malignancies. Clin. Chem. 2015;61:1299–1304. doi: 10.1373/clinchem.2015.242453. PubMed DOI