A π-Conjugated, Covalent Phosphinine Framework

. 2019 Sep 20 ; 25 (53) : 12342-12348. [epub] 20190813

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31322767

Grantová podpora
678462 H2020: European Research Council
678462 FP7 Ideas: European Research Council

Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si, and S have found their way into their building blocks so far. Here, the toolbox available to polymer and materials chemists is expanded by one additional nonmetal, phosphorus. Starting with a building block that contains a λ5 -phosphinine (C5 P) moiety, a number of polymerization protocols are evaluated, finally obtaining a π-conjugated, covalent phosphinine-based framework (CPF-1) through Suzuki-Miyaura coupling. CPF-1 is a weakly porous polymer glass (72.4 m2 g-1 BET at 77 K) with green fluorescence (λmax =546 nm) and extremely high thermal stability. The polymer catalyzes hydrogen evolution from water under UV and visible light irradiation without the need for additional co-catalyst at a rate of 33.3 μmol h-1 g-1 . These results demonstrate for the first time the incorporation of the phosphinine motif into a complex polymer framework. Phosphinine-based frameworks show promising electronic and optical properties, which might spark future interest in their applications in light-emitting devices and heterogeneous catalysis.

Zobrazit více v PubMed

Zou X., Ren H., Zhu G., Chem. Commun. 2013, 49, 3925–3936. PubMed

Dawson R., Trewin A., in Porous Polymers: Design, Synthesis and Application (Eds.: S. Qiu, T. Ben), Royal Society of Chemistry, Cambridge, 2015, Ch. 7, pp. 155–185.

Ben T., Qiu S., CrystEngComm 2013, 15, 17–26.

Lu W., Yuan D., Zhao D., Schilling C. I., Plietzsch O., Muller T., Bräse S., Guenther J., Blümel J., Krishna R., Chem. Mater. 2010, 22, 5964–5972.

Jiang J. X., Su F., Trewin A., Wood C. D., Campbell N. L., Niu H., Dickinson C., Ganin A. Y., Rosseinsky M. J., Khimyak Y. Z., Angew. Chem. Int. Ed. 2007, 46, 8574–8578; PubMed

Angew. Chem. 2007, 119, 8728–8732.

Liu X., Xu Y., Jiang D., J. Am. Chem. Soc. 2012, 134, 8738–8741. PubMed

Xu Y., Jin S., Xu H., Nagai A., Jiang D., Chem. Soc. Rev. 2013, 42, 8012–8031. PubMed

Algara-Siller G., Severin N., Chong S. Y., Björkman T., Palgrave R. G., Laybourn A., Antonietti M., Khimyak Y. Z., Krasheninnikov A. V., Rabe J. P., Angew. Chem. Int. Ed. 2014, 53, 7450–7455; PubMed

Angew. Chem. 2014, 126, 7580–7585.

Katekomol P., Roeser J. R. M., Bojdys M., Weber J., Thomas A., Chem. Mater. 2013, 25, 1542–1548;

Ren S., Bojdys M. J., Dawson R., Laybourn A., Khimyak Y. Z., Adams D. J., Cooper A. I., Adv. Mater. 2012, 24, 2357–2361; PubMed

Bojdys M. J., Jeromenok J., Thomas A., Antonietti M., Adv. Mater. 2010, 22, 2202–2205. PubMed

Schwarz D., Acharja A., Ichangi A., Lyu P., Opanasenko M. V., Goßler F. R., König T. A., Čejka J., Nachtigall P., Thomas A., Chem. Eur. J. 2018, 24, 11916–11921; PubMed

Schwarz D., Kochergin Y. S., Acharjya A., Ichangi A., Opanasenko M. V., Čejka J., Lappan U., Arki P., He J., Schmidt J., Chem. Eur. J. 2017, 23, 13023–13027. PubMed

Roeser J., Prill D., Bojdys M. J., Fayon P., Trewin A., Fitch A. N., Schmidt M. U., Thomas A., Nat. Chem. 2017, 9, 977–982. PubMed

Palkovits R., Antonietti M., Kuhn P., Thomas A., Schüth F., Angew. Chem. Int. Ed. 2009, 48, 6909–6912; PubMed

Angew. Chem. 2009, 121, 7042–7045.

Kochergin Y. S., Schwarz D., Acharjya A., Ichangi A., Kulkarni R., Eliášová P., Vacek J., Schmidt J., Thomas A., Bojdys M. J., Angew. Chem. Int. Ed. 2018, 57, 14188–14192; PubMed

Angew. Chem. 2018, 130, 14384–14388.

Cooper A. I., Adv. Mater. 2009, 21, 1291–1295.

Thomas A., Angew. Chem. Int. Ed. 2010, 49, 8328–8344; PubMed

Angew. Chem. 2010, 122, 8506–8523;

Xu Y., Lin Z., Huang X., Wang Y., Huang Y., Duan X., Adv. Mater. 2013, 25, 5779–5784. PubMed

Lu W., Yuan D., Sculley J., Zhao D., Krishna R., Zhou H.-C., J. Am. Chem. Soc. 2011, 133, 18126–18129. PubMed

Bojdys M. J., Macromol. Chem. Phys. 2016, 217, 232–241.

Alahakoon S. B., Thompson C. M., Occhialini G., Smaldone R. A., ChemSusChem 2017, 10, 2116–2129; PubMed

Huang N., Wang P., Jiang D., Nat. Rev. Mater. 2016, 1, 16068;

Díaz U., Corma A., Coord. Chem. Rev. 2016, 311, 85–124.

Abersfelder K., White A. J., Rzepa H. S., Scheschkewitz D., Science 2010, 327, 564–566; PubMed

Le Floch P., in Phosphorous Heterocycles I, Springer, Berlin, 2008, pp. 147–184.

Zhang S., Zhao X., Li B., Bai C., Li Y., Wang L., Wen R., Zhang M., Ma L., Li S., J. Hazard. Mater. 2016, 314, 95–104; PubMed

Patel M. A., Luo F., Khoshi M. R., Rabie E., Zhang Q., Flach C. R., Mendelsohn R., Garfunkel E., Szostak M., He H., ACS Nano 2016, 10, 2305–2315. PubMed

Rawe B. W., Gates D. P., Angew. Chem. Int. Ed. 2015, 54, 11438–11442; PubMed

Angew. Chem. 2015, 127, 11600–11604.

Jeng R.-J., Shau S.-M., Lin J.-J., Su W.-C., Chiu Y.-S., Eur. Polym. J. 2002, 38, 683–693.

Le Floch P., Coord. Chem. Rev. 2006, 250, 627–681;

Jiang X. D., Zhao J., Xi D., Yu H., Guan J., Li S., Sun C. L., Xiao L. J., Chem. Eur. J. 2015, 21, 6079–6082. PubMed

Mohanty P., Kull L. D., Landskron K., Nat. Commun. 2011, 2, 401; PubMed

Hu Z., Shen Z., Jimmy C. Y., Green Chem. 2017, 19, 588–613;

Xu L., Hu R., Tang B. Z., Macromolecules 2017, 50, 6043–6053;

Popa S., Iliescu S., Ilia G., Plesu N., Popa A., Visa A., Macarie L., Eur. Polym. J. 2017, 94, 286–298.

Le Floch P., in Phosphorus–Carbon Heterocyclic Chemistry, Elsevier, Amsterdam, 2001, pp. 485–533;

Lin C. S., Li J., Liu C. W., Chin. J. Chem. 1997, 15, 289–295.

Zhang H., Li X., Zhang D., Zhang L., Kapilashrami M., Sun T., Glans P.-A., Zhu J., Zhong J., Hu Z., Carbon 2016, 103, 480–487;

Zhou Y., Zhang L., Liu J., Fan X., Wang B., Wang M., Ren W., Wang J., Li M., Shi J., J. Mater. Chem. A 2015, 3, 3862–3867;

Jing L., Zhu R., Phillips D. L., Yu J. C., Adv. Funct. Mater. 2017, 27, 1703484;

Ran J., Ma T. Y., Gao G., Du X.-W., Qiao S. Z., Energy Environ. Sci. 2015, 8, 3708–3717;

Guo S., Deng Z., Li M., Jiang B., Tian C., Pan Q., Fu H., Angew. Chem. Int. Ed. 2016, 55, 1830–1834; PubMed

Angew. Chem. 2016, 128, 1862–1866;

Zhu Y.-P., Ren T.-Z., Yuan Z.-Y., ACS Appl. Mater. Interfaces 2015, 7, 16850–16856; PubMed

Zhang Y., Mori T., Ye J., Antonietti M., J. Am. Chem. Soc. 2010, 132, 6294–6295. PubMed

Märkl G., Angew. Chem. Int. Ed. Engl. 1966, 5, 846–847;

Angew. Chem. 1966, 78, 907–908.

Hashimoto N., Umano R., Ochi Y., Shimahara K., Nakamura J., Mori S., Ohta H., Watanabe Y., Hayashi M., J. Am. Chem. Soc. 2018, 140, 2046–2049; PubMed

Müller C., Wasserberg D., Weemers J. J., Pidko E. A., Hoffmann S., Lutz M., Spek A. L., Meskers S. C., Janssen R. A., van Santen R. A., Chem. Eur. J. 2007, 13, 4548–4559. PubMed

Müller C., Vogt D., Comptes Rendus Chimie 2010, 13, 1127–1143;

Trauner H., Le Floch P., Lefour J.-M., Ricard L., Mathey F., Synthesis 1995, 1995, 717–726;

Le Floch P., Carmichael D., Ricard L., Mathey F., J. Am. Chem. Soc. 1993, 115, 10665–10670.

Tokarz P., Zagórski P. M., Chem. Heterocycl. Compd. 2017, 53, 858–860.

Kuhn P., Forget A., Hartmann J., Thomas A., Antonietti M., Adv. Mater. 2009, 21, 897–901.

Broeckx L. E., Güven S., Heutz F. J., Lutz M., Vogt D., Müller C., Chem. Eur. J. 2013, 19, 13087–13098. PubMed

Hassan J., Sevignon M., Gozzi C., Schulz E., Lemaire M., Chem. Rev. 2002, 102, 1359–1470. PubMed

Schwarz D., Kochergin Y. S., Acharja A., Ichangi A., Opanasenko M. V., Čejka J., Lappan U., Arki P., He J., Schmidt J., Chem. Eur. J. 2017, 23, 13023–13027; PubMed

Nelson T. D., Crouch R. D., Org. React. 2004, 63, 265–555;

Alvaro M., Aprile C., Ferrer B., Garcia H., J. Am. Chem. Soc. 2007, 129, 5647–5655; PubMed

Kim M.-S., Phang C. S., Jeong Y. K., Park J. K., Polym. Chem. 2017, 8, 5655–5659;

Schwarz D., Noda Y., Klouda J., Schwarzová-Pecková K., Tarábek J., Rybáček J., Janoušek J., Simon F., Opanasenko M. V., Čejka J., Adv. Mater. 2017, 29, 1703399. PubMed

Kanter H., Mach W., Dimroth K., Eur. J. Inorg. Chem. 1977, 110, 395–422.

Coates J., in Encyclopedia of Analytical Chemistry, Wiley, Hoboken, 2000.

Dimroth K., Lückoff M., Eur. J. Inorg. Chem. 1980, 113, 3313–3317.

Sprick R. S., Bonillo B., Sachs M., Clowes R., Durrant J. R., Adams D. J., Cooper A. I., Chem. Commun. 2016, 52, 10008–10011. PubMed

Dimroth K., Phosphorus–Carbon Double Bonds, Springer, Berlin: 1973, pp. 1–147.

Dimroth K., Heide W., Chem. Ber. 1981, 114, 3004–3018.

Hu Z., Willard A. P., Ono R. J., Bielawski C. W., Rossky P. J., Bout D. A. V., Nat. Commun. 2015, 6, 8246. PubMed PMC

Yang C., Ma B. C., Zhang L., Lin S., Ghasimi S., Landfester K., Zhang K. A., Wang X., Angew. Chem. Int. Ed. 2016, 55, 9202–9206; PubMed

Angew. Chem. 2016, 128, 9348–9352.

Dimroth K., Städe W., Angew. Chem. Int. Ed. Engl. 1968, 7, 881–882;

Angew. Chem. 1968, 80, 966–967.

Suzuki A., Angew. Chem. Int. Ed. 2011, 50, 6722–6737; PubMed

Angew. Chem. 2011, 123, 6854–6869.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...