A π-Conjugated, Covalent Phosphinine Framework
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
678462
H2020: European Research Council
678462
FP7 Ideas: European Research Council
PubMed
31322767
PubMed Central
PMC6790668
DOI
10.1002/chem.201900281
Knihovny.cz E-zdroje
- Klíčová slova
- Suzuki-Miyaura coupling, fluorescence, phosphinine, polymers, π-conjugated frameworks,
- Publikační typ
- časopisecké články MeSH
Structural modularity of polymer frameworks is a key advantage of covalent organic polymers, however, only C, N, O, Si, and S have found their way into their building blocks so far. Here, the toolbox available to polymer and materials chemists is expanded by one additional nonmetal, phosphorus. Starting with a building block that contains a λ5 -phosphinine (C5 P) moiety, a number of polymerization protocols are evaluated, finally obtaining a π-conjugated, covalent phosphinine-based framework (CPF-1) through Suzuki-Miyaura coupling. CPF-1 is a weakly porous polymer glass (72.4 m2 g-1 BET at 77 K) with green fluorescence (λmax =546 nm) and extremely high thermal stability. The polymer catalyzes hydrogen evolution from water under UV and visible light irradiation without the need for additional co-catalyst at a rate of 33.3 μmol h-1 g-1 . These results demonstrate for the first time the incorporation of the phosphinine motif into a complex polymer framework. Phosphinine-based frameworks show promising electronic and optical properties, which might spark future interest in their applications in light-emitting devices and heterogeneous catalysis.
Bundesanstalt für Materialforschung und prüfung Unter den Eichen 87 12205 Berlin Germany
Department of Chemistry Humboldt Universität zu Berlin Brook Taylor Str 2 12489 Berlin Germany
Institute of Chemistry and Biochemistry Free University of Berlin Takustrasse 3 14195 Berlin Germany
Zobrazit více v PubMed
Zou X., Ren H., Zhu G., Chem. Commun. 2013, 49, 3925–3936. PubMed
Dawson R., Trewin A., in Porous Polymers: Design, Synthesis and Application (Eds.: S. Qiu, T. Ben), Royal Society of Chemistry, Cambridge, 2015, Ch. 7, pp. 155–185.
Ben T., Qiu S., CrystEngComm 2013, 15, 17–26.
Lu W., Yuan D., Zhao D., Schilling C. I., Plietzsch O., Muller T., Bräse S., Guenther J., Blümel J., Krishna R., Chem. Mater. 2010, 22, 5964–5972.
Jiang J. X., Su F., Trewin A., Wood C. D., Campbell N. L., Niu H., Dickinson C., Ganin A. Y., Rosseinsky M. J., Khimyak Y. Z., Angew. Chem. Int. Ed. 2007, 46, 8574–8578; PubMed
Angew. Chem. 2007, 119, 8728–8732.
Liu X., Xu Y., Jiang D., J. Am. Chem. Soc. 2012, 134, 8738–8741. PubMed
Xu Y., Jin S., Xu H., Nagai A., Jiang D., Chem. Soc. Rev. 2013, 42, 8012–8031. PubMed
Algara-Siller G., Severin N., Chong S. Y., Björkman T., Palgrave R. G., Laybourn A., Antonietti M., Khimyak Y. Z., Krasheninnikov A. V., Rabe J. P., Angew. Chem. Int. Ed. 2014, 53, 7450–7455; PubMed
Angew. Chem. 2014, 126, 7580–7585.
Katekomol P., Roeser J. R. M., Bojdys M., Weber J., Thomas A., Chem. Mater. 2013, 25, 1542–1548;
Ren S., Bojdys M. J., Dawson R., Laybourn A., Khimyak Y. Z., Adams D. J., Cooper A. I., Adv. Mater. 2012, 24, 2357–2361; PubMed
Bojdys M. J., Jeromenok J., Thomas A., Antonietti M., Adv. Mater. 2010, 22, 2202–2205. PubMed
Schwarz D., Acharja A., Ichangi A., Lyu P., Opanasenko M. V., Goßler F. R., König T. A., Čejka J., Nachtigall P., Thomas A., Chem. Eur. J. 2018, 24, 11916–11921; PubMed
Schwarz D., Kochergin Y. S., Acharjya A., Ichangi A., Opanasenko M. V., Čejka J., Lappan U., Arki P., He J., Schmidt J., Chem. Eur. J. 2017, 23, 13023–13027. PubMed
Roeser J., Prill D., Bojdys M. J., Fayon P., Trewin A., Fitch A. N., Schmidt M. U., Thomas A., Nat. Chem. 2017, 9, 977–982. PubMed
Palkovits R., Antonietti M., Kuhn P., Thomas A., Schüth F., Angew. Chem. Int. Ed. 2009, 48, 6909–6912; PubMed
Angew. Chem. 2009, 121, 7042–7045.
Kochergin Y. S., Schwarz D., Acharjya A., Ichangi A., Kulkarni R., Eliášová P., Vacek J., Schmidt J., Thomas A., Bojdys M. J., Angew. Chem. Int. Ed. 2018, 57, 14188–14192; PubMed
Angew. Chem. 2018, 130, 14384–14388.
Cooper A. I., Adv. Mater. 2009, 21, 1291–1295.
Thomas A., Angew. Chem. Int. Ed. 2010, 49, 8328–8344; PubMed
Angew. Chem. 2010, 122, 8506–8523;
Xu Y., Lin Z., Huang X., Wang Y., Huang Y., Duan X., Adv. Mater. 2013, 25, 5779–5784. PubMed
Lu W., Yuan D., Sculley J., Zhao D., Krishna R., Zhou H.-C., J. Am. Chem. Soc. 2011, 133, 18126–18129. PubMed
Bojdys M. J., Macromol. Chem. Phys. 2016, 217, 232–241.
Alahakoon S. B., Thompson C. M., Occhialini G., Smaldone R. A., ChemSusChem 2017, 10, 2116–2129; PubMed
Huang N., Wang P., Jiang D., Nat. Rev. Mater. 2016, 1, 16068;
Díaz U., Corma A., Coord. Chem. Rev. 2016, 311, 85–124.
Abersfelder K., White A. J., Rzepa H. S., Scheschkewitz D., Science 2010, 327, 564–566; PubMed
Le Floch P., in Phosphorous Heterocycles I, Springer, Berlin, 2008, pp. 147–184.
Zhang S., Zhao X., Li B., Bai C., Li Y., Wang L., Wen R., Zhang M., Ma L., Li S., J. Hazard. Mater. 2016, 314, 95–104; PubMed
Patel M. A., Luo F., Khoshi M. R., Rabie E., Zhang Q., Flach C. R., Mendelsohn R., Garfunkel E., Szostak M., He H., ACS Nano 2016, 10, 2305–2315. PubMed
Rawe B. W., Gates D. P., Angew. Chem. Int. Ed. 2015, 54, 11438–11442; PubMed
Angew. Chem. 2015, 127, 11600–11604.
Jeng R.-J., Shau S.-M., Lin J.-J., Su W.-C., Chiu Y.-S., Eur. Polym. J. 2002, 38, 683–693.
Le Floch P., Coord. Chem. Rev. 2006, 250, 627–681;
Jiang X. D., Zhao J., Xi D., Yu H., Guan J., Li S., Sun C. L., Xiao L. J., Chem. Eur. J. 2015, 21, 6079–6082. PubMed
Mohanty P., Kull L. D., Landskron K., Nat. Commun. 2011, 2, 401; PubMed
Hu Z., Shen Z., Jimmy C. Y., Green Chem. 2017, 19, 588–613;
Xu L., Hu R., Tang B. Z., Macromolecules 2017, 50, 6043–6053;
Popa S., Iliescu S., Ilia G., Plesu N., Popa A., Visa A., Macarie L., Eur. Polym. J. 2017, 94, 286–298.
Le Floch P., in Phosphorus–Carbon Heterocyclic Chemistry, Elsevier, Amsterdam, 2001, pp. 485–533;
Lin C. S., Li J., Liu C. W., Chin. J. Chem. 1997, 15, 289–295.
Zhang H., Li X., Zhang D., Zhang L., Kapilashrami M., Sun T., Glans P.-A., Zhu J., Zhong J., Hu Z., Carbon 2016, 103, 480–487;
Zhou Y., Zhang L., Liu J., Fan X., Wang B., Wang M., Ren W., Wang J., Li M., Shi J., J. Mater. Chem. A 2015, 3, 3862–3867;
Jing L., Zhu R., Phillips D. L., Yu J. C., Adv. Funct. Mater. 2017, 27, 1703484;
Ran J., Ma T. Y., Gao G., Du X.-W., Qiao S. Z., Energy Environ. Sci. 2015, 8, 3708–3717;
Guo S., Deng Z., Li M., Jiang B., Tian C., Pan Q., Fu H., Angew. Chem. Int. Ed. 2016, 55, 1830–1834; PubMed
Angew. Chem. 2016, 128, 1862–1866;
Zhu Y.-P., Ren T.-Z., Yuan Z.-Y., ACS Appl. Mater. Interfaces 2015, 7, 16850–16856; PubMed
Zhang Y., Mori T., Ye J., Antonietti M., J. Am. Chem. Soc. 2010, 132, 6294–6295. PubMed
Märkl G., Angew. Chem. Int. Ed. Engl. 1966, 5, 846–847;
Angew. Chem. 1966, 78, 907–908.
Hashimoto N., Umano R., Ochi Y., Shimahara K., Nakamura J., Mori S., Ohta H., Watanabe Y., Hayashi M., J. Am. Chem. Soc. 2018, 140, 2046–2049; PubMed
Müller C., Wasserberg D., Weemers J. J., Pidko E. A., Hoffmann S., Lutz M., Spek A. L., Meskers S. C., Janssen R. A., van Santen R. A., Chem. Eur. J. 2007, 13, 4548–4559. PubMed
Müller C., Vogt D., Comptes Rendus Chimie 2010, 13, 1127–1143;
Trauner H., Le Floch P., Lefour J.-M., Ricard L., Mathey F., Synthesis 1995, 1995, 717–726;
Le Floch P., Carmichael D., Ricard L., Mathey F., J. Am. Chem. Soc. 1993, 115, 10665–10670.
Tokarz P., Zagórski P. M., Chem. Heterocycl. Compd. 2017, 53, 858–860.
Kuhn P., Forget A., Hartmann J., Thomas A., Antonietti M., Adv. Mater. 2009, 21, 897–901.
Broeckx L. E., Güven S., Heutz F. J., Lutz M., Vogt D., Müller C., Chem. Eur. J. 2013, 19, 13087–13098. PubMed
Hassan J., Sevignon M., Gozzi C., Schulz E., Lemaire M., Chem. Rev. 2002, 102, 1359–1470. PubMed
Schwarz D., Kochergin Y. S., Acharja A., Ichangi A., Opanasenko M. V., Čejka J., Lappan U., Arki P., He J., Schmidt J., Chem. Eur. J. 2017, 23, 13023–13027; PubMed
Nelson T. D., Crouch R. D., Org. React. 2004, 63, 265–555;
Alvaro M., Aprile C., Ferrer B., Garcia H., J. Am. Chem. Soc. 2007, 129, 5647–5655; PubMed
Kim M.-S., Phang C. S., Jeong Y. K., Park J. K., Polym. Chem. 2017, 8, 5655–5659;
Schwarz D., Noda Y., Klouda J., Schwarzová-Pecková K., Tarábek J., Rybáček J., Janoušek J., Simon F., Opanasenko M. V., Čejka J., Adv. Mater. 2017, 29, 1703399. PubMed
Kanter H., Mach W., Dimroth K., Eur. J. Inorg. Chem. 1977, 110, 395–422.
Coates J., in Encyclopedia of Analytical Chemistry, Wiley, Hoboken, 2000.
Dimroth K., Lückoff M., Eur. J. Inorg. Chem. 1980, 113, 3313–3317.
Sprick R. S., Bonillo B., Sachs M., Clowes R., Durrant J. R., Adams D. J., Cooper A. I., Chem. Commun. 2016, 52, 10008–10011. PubMed
Dimroth K., Phosphorus–Carbon Double Bonds, Springer, Berlin: 1973, pp. 1–147.
Dimroth K., Heide W., Chem. Ber. 1981, 114, 3004–3018.
Hu Z., Willard A. P., Ono R. J., Bielawski C. W., Rossky P. J., Bout D. A. V., Nat. Commun. 2015, 6, 8246. PubMed PMC
Yang C., Ma B. C., Zhang L., Lin S., Ghasimi S., Landfester K., Zhang K. A., Wang X., Angew. Chem. Int. Ed. 2016, 55, 9202–9206; PubMed
Angew. Chem. 2016, 128, 9348–9352.
Dimroth K., Städe W., Angew. Chem. Int. Ed. Engl. 1968, 7, 881–882;
Angew. Chem. 1968, 80, 966–967.
Suzuki A., Angew. Chem. Int. Ed. 2011, 50, 6722–6737; PubMed
Angew. Chem. 2011, 123, 6854–6869.