Real-time optical and electronic sensing with a β-amino enone linked, triazine-containing 2D covalent organic framework
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
678462
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
PubMed
31324876
PubMed Central
PMC6642192
DOI
10.1038/s41467-019-11264-z
PII: 10.1038/s41467-019-11264-z
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Fully-aromatic, two-dimensional covalent organic frameworks (2D COFs) are hailed as candidates for electronic and optical devices, yet to-date few applications emerged that make genuine use of their rational, predictive design principles and permanent pore structure. Here, we present a 2D COF made up of chemoresistant β-amino enone bridges and Lewis-basic triazine moieties that exhibits a dramatic real-time response in the visible spectrum and an increase in bulk conductivity by two orders of magnitude to a chemical trigger - corrosive HCl vapours. The optical and electronic response is fully reversible using a chemical switch (NH3 vapours) or physical triggers (temperature or vacuum). These findings demonstrate a useful application of fully-aromatic 2D COFs as real-time responsive chemosensors and switches.
Department of Chemistry Humboldt Universität zu Berlin Brook Taylor Str 2 12489 Berlin Germany
Department of Organic Chemistry Charles University Prague Hlavova 8 128 40 Prague Czech Republic
Zobrazit více v PubMed
Ekanayake EM, Preethichandra DM, Kaneto K. Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. Biosens. Bioelectron. 2007;23:107–113. doi: 10.1016/j.bios.2007.03.022. PubMed DOI
Zhao, X., Chaudhry, S. T. & Mei, J. in Adv. Heterocycl. Chem. Vol. 121, pp. 133-171 (Elsevier, Cambridge, MA, 2017).
Ostroverkhova O. Organic optoelectronic materials: mechanisms and applications. Chem. Rev. 2016;116:13279–13412. doi: 10.1021/acs.chemrev.6b00127. PubMed DOI
Gao X, Zhao Z. High mobility organic semiconductors for field-effect transistors. Sci. China. 2015;58:947–968. doi: 10.1007/s11426-015-5399-5. DOI
Christogiannis N, et al. Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED. Adv. Opt. Mater. 2013;1:503–509. doi: 10.1002/adom.201300017. DOI
McGehee, M. D. & Goh, C. in Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2005 Symposium. (National Academies Press, Washington, DC, 2006).
Roncali J. Molecular engineering of the band gap of π‐conjugated systems: facing technological applications. Macromol. Rapid Commun. 2007;28:1761–1775. doi: 10.1002/marc.200700345. DOI
Kessler FK, et al. Functional carbon nitride materials—design strategies for electrochemical devices. Nat. Rev. Mater. 2017;2:17030. doi: 10.1038/natrevmats.2017.30. DOI
Irfan A, Aftab H, Al-Sehemi AG. Push–pull effect on the geometries, electronic and optical properties of thiophene based dye-sensitized solar cell materials. J. Saudi Chem. Soc. 2014;18:914–919. doi: 10.1016/j.jscs.2011.11.013. DOI
Ding S-Y, Wang W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 2013;42:548–568. doi: 10.1039/C2CS35072F. PubMed DOI
Zhao W, Xia L, Liu X. Covalent organic frameworks (COFs): perspectives of industrialization. CrystEngComm. 2018;20:1613–1634. doi: 10.1039/C7CE02079A. DOI
Huang N, Wang P, Jiang D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 2016;1:16068. doi: 10.1038/natrevmats.2016.68. DOI
Diercks CS, Yaghi OM. The atom, the molecule, and the covalent organic framework. Science. 2017;355:eaal1585. doi: 10.1126/science.aal1585. PubMed DOI
Bisbey RP, Dichtel WR. Covalent organic frameworks as a platform for multidimensional polymerization. ACS Cent. Sci. 2017;3:533–543. doi: 10.1021/acscentsci.7b00127. PubMed DOI PMC
Matsumoto M, et al. Rapid, low temperature formation of imine-linked covalent organic frameworks catalyzed by metal triflates. J. Am. Chem. Soc. 2017;139:4999–5002. doi: 10.1021/jacs.7b01240. PubMed DOI
Vitaku E, Dichtel WR. Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J. Am. Chem. Soc. 2017;139:12911–12914. doi: 10.1021/jacs.7b06913. PubMed DOI
Schwarz Dana, Acharjya Amitava, Ichangi Arun, Kochergin Yaroslav S., Lyu Pengbo, Opanasenko Maksym V., Tarábek Ján, Vacek Chocholoušová Jana, Vacek Jaroslav, Schmidt Johannes, Čejka Jiří, Nachtigall Petr, Thomas Arne, Bojdys Michael J. Tuning the Porosity and Photocatalytic Performance of Triazine‐Based Graphdiyne Polymers through Polymorphism. ChemSusChem. 2018;12(1):194–199. doi: 10.1002/cssc.201802034. PubMed DOI
Kochergin YS, et al. Exploring the “Goldilocks Zone” of semiconducting polymer photocatalysts by donor–acceptor interactions. Angew. Chem. Int. Ed. 2018;57:14188–14192. doi: 10.1002/anie.201809702. PubMed DOI
Biswal BP, et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 2013;135:5328–5331. doi: 10.1021/ja4017842. PubMed DOI
Schwarz D, et al. Twinned growth of metal‐free, triazine‐based photocatalyst films as mixed‐dimensional (2D/3D) van der Waals heterostructures. Adv. Mater. 2017;29:1703399. doi: 10.1002/adma.201703399. PubMed DOI
Algara‐Siller G, et al. Triazine‐based graphitic carbon nitride: a two‐dimensional semiconductor. Angew. Chem. 2014;126:7580–7585. doi: 10.1002/ange.201402191. PubMed DOI
Rao MR, Fang Y, De Feyter S, Perepichka DF. Conjugated covalent organic frameworks via michael addition–elimination. J. Am. Chem. Soc. 2017;139:2421–2427. doi: 10.1021/jacs.6b12005. PubMed DOI
Elbe F, et al. Photochemical and photophysical deactivation of 2, 4, 6-triaryl-1, 3, 5-triazines. J. Phys. Chem. A. 2000;104:8296–8306. doi: 10.1021/jp000086i. DOI
Kandambeth S, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 2012;134:19524–19527. doi: 10.1021/ja308278w. PubMed DOI
Medina DD, et al. Room temperature synthesis of covalent–organic framework films through vapor-assisted conversion. J. Am. Chem. Soc. 2015;137:1016–1019. doi: 10.1021/ja510895m. PubMed DOI PMC
Pachfule P, et al. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 2018;140:1423–1427. doi: 10.1021/jacs.7b11255. PubMed DOI
Clougherty L, Sousa J, Wyman G. C = N stretching frequency in infrared spectra of aromatic azomethines. J. Org. Chem. 1957;22:462–462. doi: 10.1021/jo01355a618. DOI
Waller PJ, et al. Chemical conversion of linkages in covalent organic frameworks. J. Am. Chem. Soc. 2016;138:15519–15522. doi: 10.1021/jacs.6b08377. PubMed DOI
Niu F, Tao L-M, Deng Y-C, Wang Q-H, Song W-G. Phosphorus doped graphene nanosheets for room temperature NH 3 sensing. N. J. Chem. 2014;38:2269–2272. doi: 10.1039/c4nj00162a. DOI
Tao L-M, Niu F, Zhang D, Wang T-M, Wang Q-H. Amorphous covalent triazine frameworks for high performance room temperature ammonia gas sensing. N. J. Chem. 2014;38:2774–2777. doi: 10.1039/c4nj00476k. DOI
Xu N, et al. Continuous detection of HCl and NH 3 gases with a high-performance fluorescent polymer sensor. N. J. Chem. 2018;42:13367–13374. doi: 10.1039/C8NJ02344A. DOI
Du X, Zou G, Wang Z, Wang X. A scalable chemical route to soluble acidified graphitic carbon nitride: an ideal precursor for isolated ultrathin gC 3 N 4 nanosheets. Nanoscale. 2015;7:8701–8706. doi: 10.1039/C5NR00665A. PubMed DOI
Cui Y, et al. Design and synthesis of a multifunctional porous N-rich polymer containing s-triazine and Tröger’s base for CO 2 adsorption, catalysis and sensing. Polym. Chem. 2018;9:2643–2649. doi: 10.1039/C8PY00177D. DOI
Welch GC, Bazan GC. Lewis acid adducts of narrow band gap conjugated polymers. J. Am. Chem. Soc. 2011;133:4632–4644. doi: 10.1021/ja110968m. PubMed DOI
Ong W-J, Tan L-L, Chai S-P, Yong S-T, Mohamed AR. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy. 2015;13:757–770. doi: 10.1016/j.nanoen.2015.03.014. DOI
Zhang Y, Thomas A, Antonietti M, Wang X. Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments. J. Am. Chem. Soc. 2008;131:50–51. doi: 10.1021/ja808329f. PubMed DOI
Chaoui N, Trunk M, Dawson R, Schmidt J, Thomas A. Trends and challenges for microporous polymers. Chem. Soc. Rev. 2017;46:3302–3321. doi: 10.1039/C7CS00071E. PubMed DOI
Yao C, Li G, Wang J, Xu Y, Chang L. Template-free synthesis of porous carbon from triazine based polymers and their use in iodine adsorption and CO2 capture. Sci. Rep. 2018;8:1867. doi: 10.1038/s41598-018-20003-1. PubMed DOI PMC
Ding H, et al. A tetrathiafulvalene‐based electroactive covalent organic framework. Chem. Eur. J. 2014;20:14614–14618. doi: 10.1002/chem.201405330. PubMed DOI
Liao H, et al. A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium–sulfur batteries. J. Mater. Chem. A. 2016;4:7416–7421. doi: 10.1039/C6TA00483K. DOI
Wan S, Guo J, Kim J, Ihee H, Jiang D. A belt‐shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. 2008;120:8958–8962. doi: 10.1002/ange.200803826. PubMed DOI