Real-time optical and electronic sensing with a β-amino enone linked, triazine-containing 2D covalent organic framework

. 2019 Jul 19 ; 10 (1) : 3228. [epub] 20190719

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31324876

Grantová podpora
678462 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)

Odkazy

PubMed 31324876
PubMed Central PMC6642192
DOI 10.1038/s41467-019-11264-z
PII: 10.1038/s41467-019-11264-z
Knihovny.cz E-zdroje

Fully-aromatic, two-dimensional covalent organic frameworks (2D COFs) are hailed as candidates for electronic and optical devices, yet to-date few applications emerged that make genuine use of their rational, predictive design principles and permanent pore structure. Here, we present a 2D COF made up of chemoresistant β-amino enone bridges and Lewis-basic triazine moieties that exhibits a dramatic real-time response in the visible spectrum and an increase in bulk conductivity by two orders of magnitude to a chemical trigger - corrosive HCl vapours. The optical and electronic response is fully reversible using a chemical switch (NH3 vapours) or physical triggers (temperature or vacuum). These findings demonstrate a useful application of fully-aromatic 2D COFs as real-time responsive chemosensors and switches.

Zobrazit více v PubMed

Ekanayake EM, Preethichandra DM, Kaneto K. Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors. Biosens. Bioelectron. 2007;23:107–113. doi: 10.1016/j.bios.2007.03.022. PubMed DOI

Zhao, X., Chaudhry, S. T. & Mei, J. in Adv. Heterocycl. Chem. Vol. 121, pp. 133-171 (Elsevier, Cambridge, MA, 2017).

Ostroverkhova O. Organic optoelectronic materials: mechanisms and applications. Chem. Rev. 2016;116:13279–13412. doi: 10.1021/acs.chemrev.6b00127. PubMed DOI

Gao X, Zhao Z. High mobility organic semiconductors for field-effect transistors. Sci. China. 2015;58:947–968. doi: 10.1007/s11426-015-5399-5. DOI

Christogiannis N, et al. Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED. Adv. Opt. Mater. 2013;1:503–509. doi: 10.1002/adom.201300017. DOI

McGehee, M. D. & Goh, C. in Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2005 Symposium. (National Academies Press, Washington, DC, 2006).

Roncali J. Molecular engineering of the band gap of π‐conjugated systems: facing technological applications. Macromol. Rapid Commun. 2007;28:1761–1775. doi: 10.1002/marc.200700345. DOI

Kessler FK, et al. Functional carbon nitride materials—design strategies for electrochemical devices. Nat. Rev. Mater. 2017;2:17030. doi: 10.1038/natrevmats.2017.30. DOI

Irfan A, Aftab H, Al-Sehemi AG. Push–pull effect on the geometries, electronic and optical properties of thiophene based dye-sensitized solar cell materials. J. Saudi Chem. Soc. 2014;18:914–919. doi: 10.1016/j.jscs.2011.11.013. DOI

Ding S-Y, Wang W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 2013;42:548–568. doi: 10.1039/C2CS35072F. PubMed DOI

Zhao W, Xia L, Liu X. Covalent organic frameworks (COFs): perspectives of industrialization. CrystEngComm. 2018;20:1613–1634. doi: 10.1039/C7CE02079A. DOI

Huang N, Wang P, Jiang D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 2016;1:16068. doi: 10.1038/natrevmats.2016.68. DOI

Diercks CS, Yaghi OM. The atom, the molecule, and the covalent organic framework. Science. 2017;355:eaal1585. doi: 10.1126/science.aal1585. PubMed DOI

Bisbey RP, Dichtel WR. Covalent organic frameworks as a platform for multidimensional polymerization. ACS Cent. Sci. 2017;3:533–543. doi: 10.1021/acscentsci.7b00127. PubMed DOI PMC

Matsumoto M, et al. Rapid, low temperature formation of imine-linked covalent organic frameworks catalyzed by metal triflates. J. Am. Chem. Soc. 2017;139:4999–5002. doi: 10.1021/jacs.7b01240. PubMed DOI

Vitaku E, Dichtel WR. Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J. Am. Chem. Soc. 2017;139:12911–12914. doi: 10.1021/jacs.7b06913. PubMed DOI

Schwarz Dana, Acharjya Amitava, Ichangi Arun, Kochergin Yaroslav S., Lyu Pengbo, Opanasenko Maksym V., Tarábek Ján, Vacek Chocholoušová Jana, Vacek Jaroslav, Schmidt Johannes, Čejka Jiří, Nachtigall Petr, Thomas Arne, Bojdys Michael J. Tuning the Porosity and Photocatalytic Performance of Triazine‐Based Graphdiyne Polymers through Polymorphism. ChemSusChem. 2018;12(1):194–199. doi: 10.1002/cssc.201802034. PubMed DOI

Kochergin YS, et al. Exploring the “Goldilocks Zone” of semiconducting polymer photocatalysts by donor–acceptor interactions. Angew. Chem. Int. Ed. 2018;57:14188–14192. doi: 10.1002/anie.201809702. PubMed DOI

Biswal BP, et al. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 2013;135:5328–5331. doi: 10.1021/ja4017842. PubMed DOI

Schwarz D, et al. Twinned growth of metal‐free, triazine‐based photocatalyst films as mixed‐dimensional (2D/3D) van der Waals heterostructures. Adv. Mater. 2017;29:1703399. doi: 10.1002/adma.201703399. PubMed DOI

Algara‐Siller G, et al. Triazine‐based graphitic carbon nitride: a two‐dimensional semiconductor. Angew. Chem. 2014;126:7580–7585. doi: 10.1002/ange.201402191. PubMed DOI

Rao MR, Fang Y, De Feyter S, Perepichka DF. Conjugated covalent organic frameworks via michael addition–elimination. J. Am. Chem. Soc. 2017;139:2421–2427. doi: 10.1021/jacs.6b12005. PubMed DOI

Elbe F, et al. Photochemical and photophysical deactivation of 2, 4, 6-triaryl-1, 3, 5-triazines. J. Phys. Chem. A. 2000;104:8296–8306. doi: 10.1021/jp000086i. DOI

Kandambeth S, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 2012;134:19524–19527. doi: 10.1021/ja308278w. PubMed DOI

Medina DD, et al. Room temperature synthesis of covalent–organic framework films through vapor-assisted conversion. J. Am. Chem. Soc. 2015;137:1016–1019. doi: 10.1021/ja510895m. PubMed DOI PMC

Pachfule P, et al. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 2018;140:1423–1427. doi: 10.1021/jacs.7b11255. PubMed DOI

Clougherty L, Sousa J, Wyman G. C = N stretching frequency in infrared spectra of aromatic azomethines. J. Org. Chem. 1957;22:462–462. doi: 10.1021/jo01355a618. DOI

Waller PJ, et al. Chemical conversion of linkages in covalent organic frameworks. J. Am. Chem. Soc. 2016;138:15519–15522. doi: 10.1021/jacs.6b08377. PubMed DOI

Niu F, Tao L-M, Deng Y-C, Wang Q-H, Song W-G. Phosphorus doped graphene nanosheets for room temperature NH 3 sensing. N. J. Chem. 2014;38:2269–2272. doi: 10.1039/c4nj00162a. DOI

Tao L-M, Niu F, Zhang D, Wang T-M, Wang Q-H. Amorphous covalent triazine frameworks for high performance room temperature ammonia gas sensing. N. J. Chem. 2014;38:2774–2777. doi: 10.1039/c4nj00476k. DOI

Xu N, et al. Continuous detection of HCl and NH 3 gases with a high-performance fluorescent polymer sensor. N. J. Chem. 2018;42:13367–13374. doi: 10.1039/C8NJ02344A. DOI

Du X, Zou G, Wang Z, Wang X. A scalable chemical route to soluble acidified graphitic carbon nitride: an ideal precursor for isolated ultrathin gC 3 N 4 nanosheets. Nanoscale. 2015;7:8701–8706. doi: 10.1039/C5NR00665A. PubMed DOI

Cui Y, et al. Design and synthesis of a multifunctional porous N-rich polymer containing s-triazine and Tröger’s base for CO 2 adsorption, catalysis and sensing. Polym. Chem. 2018;9:2643–2649. doi: 10.1039/C8PY00177D. DOI

Welch GC, Bazan GC. Lewis acid adducts of narrow band gap conjugated polymers. J. Am. Chem. Soc. 2011;133:4632–4644. doi: 10.1021/ja110968m. PubMed DOI

Ong W-J, Tan L-L, Chai S-P, Yong S-T, Mohamed AR. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy. 2015;13:757–770. doi: 10.1016/j.nanoen.2015.03.014. DOI

Zhang Y, Thomas A, Antonietti M, Wang X. Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments. J. Am. Chem. Soc. 2008;131:50–51. doi: 10.1021/ja808329f. PubMed DOI

Chaoui N, Trunk M, Dawson R, Schmidt J, Thomas A. Trends and challenges for microporous polymers. Chem. Soc. Rev. 2017;46:3302–3321. doi: 10.1039/C7CS00071E. PubMed DOI

Yao C, Li G, Wang J, Xu Y, Chang L. Template-free synthesis of porous carbon from triazine based polymers and their use in iodine adsorption and CO2 capture. Sci. Rep. 2018;8:1867. doi: 10.1038/s41598-018-20003-1. PubMed DOI PMC

Ding H, et al. A tetrathiafulvalene‐based electroactive covalent organic framework. Chem. Eur. J. 2014;20:14614–14618. doi: 10.1002/chem.201405330. PubMed DOI

Liao H, et al. A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium–sulfur batteries. J. Mater. Chem. A. 2016;4:7416–7421. doi: 10.1039/C6TA00483K. DOI

Wan S, Guo J, Kim J, Ihee H, Jiang D. A belt‐shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. 2008;120:8958–8962. doi: 10.1002/ange.200803826. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...