• This record comes from PubMed

A novel variant of C12orf4 in a consanguineous Armenian family confirms the etiology of autosomal recessive intellectual disability type 66 with delineation of the phenotype

. 2019 Sep ; 7 (9) : e865. [epub] 20190723

Language English Country United States Media print-electronic

Document type Case Reports, Journal Article, Research Support, Non-U.S. Gov't

BACKGROUND: Intellectual disability (ID) is a feature of many rare diseases caused by thousands of genes. This genetic heterogeneity implies that pathogenic variants in a specific gene are found only in a small number of patients, and difficulties arise in the definition of prevailing genotype and characteristic phenotype associated with that gene. One of such very rare disorders is autosomal recessive ID type 66 (OMIM #618221) caused by defects in C12orf4. Up to now, six families have been reported with mostly truncating variants. The spectrum of the clinical phenotype was not emphasized in previous reports, and detailed phenotype was not always available from previous patients, especially from large cohort studies. METHODS: Exome sequencing was performed in a consanguineous Armenian family with two affected adult brothers. RESULTS: The patients carry a novel homozygous nonsense C12orf4 variant. The integration of previous data and phenotyping of the brothers indicate that the clinical picture of C12orf4 defects involves hypotonia in infancy, rather severe ID, speech impairment, and behavioral problems such as aggressiveness, unstable mood, and autistic features. Several other symptoms are more variable and less consistent. CONCLUSION: This rather nonsyndromic and nonspecific clinical picture implies that additional patients with C12orf4 defects will likely continue to be identified using the "genotype-first" approach, rather than based on clinical assessment. The phenotype needs further delineation in future reports.

See more in PubMed

Alazami, A. M. , Patel, N. , Shamseldin, H. E. , Anazi, S. , Al‐Dosari, M. S. , Alzahrani, F. , … Alkuraya, F. S. (2015). Accelerating novel candidate gene discovery in neurogenetic disorders via whole‐exome sequencing of prescreened multiplex consanguineous families. Cell Reports, 10(2), 148–161. 10.1016/j.celrep.2014.12.015 PubMed DOI

Bhoj, E. J. , Li, D. , Harr, M. , Edvardson, S. , Elpeleg, O. , Chisholm, E. , … Hakonarson, H. (2016). Mutations in TBCK, encoding TBC1‐domain‐containing kinase, lead to a recognizable syndrome of intellectual disability and hypotonia. American Journal of Human Genetics, 98(4), 782–788. 10.1016/j.ajhg.2016.03.016 PubMed DOI PMC

Chong, J. X. , Caputo, V. , Phelps, I. G. , Stella, L. , Worgan, L. , Dempsey, J. C. , … Doherty, D. (2016). Recessive inactivating mutations in TBCK, encoding a Rab GTPase‐activating protein, cause Severe infantile syndromic encephalopathy. American Journal of Human Genetics, 98(4), 772–781. 10.1016/j.ajhg.2016.01.016 PubMed DOI PMC

Crawley, J. N. , Heyer, W. D. , & LaSalle, J. M. (2016). Autism and cancer share risk genes, pathways, and drug targets. Trends in Genetics, 32(3), 139–146. 10.1016/j.tig.2016.01.001 PubMed DOI PMC

Guerreiro, R. J. , Brown, R. , Dian, D. , de Goede, C. , Bras, J. , & Mole, S. E. (2016). Mutation of TBCK causes a rare recessive developmental disorder. Neurology Genetics, 2(3), e76 10.1212/NXG.0000000000000076 PubMed DOI PMC

Harripaul, R. , Vasli, N. , Mikhailov, A. , Rafiq, M. A. , Mittal, K. , Windpassinger, C. , … Vincent, J. B. (2018). Mapping autosomal recessive intellectual disability: Combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families. Molecular Psychiatry, 23(4), 973–984. 10.1038/mp.2017.60 PubMed DOI

Hein, M. Y. , Hubner, N. C. , Poser, I. , Cox, J. , Nagaraj, N. , Toyoda, Y. , … Mann, M. (2015). A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell, 163(3), 712–723. 10.1016/j.cell.2015.09.053 PubMed DOI

Hu, H. , Kahrizi, K. , Musante, L. , Fattahi, Z. , Herwig, R. , Hosseini, M. , … Najmabadi, H. (2019). Genetics of intellectual disability in consanguineous families. Molecular Psychiatry, 24(7), 1027–1039. 10.1038/s41380-017-0012-2 PubMed DOI

Jamra, R. (2018). Genetics of autosomal recessive intellectual disability. Medizinische Genetik, 30(3), 323–327. 10.1007/s11825-018-0209-z PubMed DOI PMC

Kestenbaum, B. , Glazer, N. L. , Köttgen, A. , Felix, J. F. , Hwang, S.‐J. , Liu, Y. , … Fox, C. S. (2010). Common genetic variants associate with serum phosphorus concentration. Journal of the American Society of Nephrology, 21(7), 1223–1232. 10.1681/ASN.2009111104 PubMed DOI PMC

Lek, M. , Karczewski, K. J. , Minikel, E. V. , Samocha, K. E. , Banks, E. , Fennell, T. , … MacArthur, D. G. (2016). Analysis of protein‐coding genetic variation in 60,706 humans. Nature, 536(7616), 285–291. 10.1038/nature19057 PubMed DOI PMC

Maddirevula, S. , Alzahrani, F. , Al‐Owain, M. , Al Muhaizea, M. A. , Kayyali, H. R. , AlHashem, A. , … Alkuraya, F. S. (2018). Autozygome and high throughput confirmation of disease genes candidacy. Genetics in Medicine, 21(3), 736–742. 10.1038/s41436-018-0138-x PubMed DOI PMC

Maulik, P. K. , Mascarenhas, M. N. , Mathers, C. D. , Dua, T. , & Saxena, S. (2011). Prevalence of intellectual disability: A meta‐analysis of population‐based studies. Research in Developmental Disabilities, 32(2), 419–436. 10.1016/j.ridd.2010.12.018 PubMed DOI

Mazuc, E. , Guglielmi, L. , Bec, N. , Parez, V. , Hahn, C. S. , Mollevi, C. , … Martineau, P. (2014). In‐cell intrabody selection from a diverse human library identifies C12orf4 protein as a new player in rodent mast cell degranulation. PLoS ONE, 9(8), e104998 10.1371/journal.pone.0104998 PubMed DOI PMC

Philips, A. K. , Pinelli, M. , de Bie, C. I. , Mustonen, A. , Maatta, T. , Arts, H. H. , … Jarvela, I. (2017). Identification of C12orf4 as a gene for autosomal recessive intellectual disability. Clinical Genetics, 91(1), 100–105. 10.1111/cge.12821 PubMed DOI

Prchalova, D. , Havlovicova, M. , Sterbova, K. , Stranecky, V. , Hancarova, M. , & Sedlacek, Z. (2017). Analysis of 31‐year‐old patient with SYNGAP1 gene defect points to importance of variants in broader splice regions and reveals developmental trajectory of SYNGAP1‐associated phenotype: Case report. BMC Medical Genetics, 18(1), 62 10.1186/s12881-017-0425-4 PubMed DOI PMC

Reuter, M. S. , Tawamie, H. , Buchert, R. , Hosny Gebril, O. , Froukh, T. , Thiel, C. , … Abou Jamra, R. (2017). Diagnostic yield and novel candidate genes by exome sequencing in 152 consanguineous families with neurodevelopmental disorders. JAMA Psychiatry, 74(3), 293–299. 10.1001/jamapsychiatry.2016.3798 PubMed DOI

Rudin, C. M. , Durinck, S. , Stawiski, E. W. , Poirier, J. T. , Modrusan, Z. , Shames, D. S. , … Seshagiri, S. (2012). Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small‐cell lung cancer. Nature Genetics, 44(10), 1111–1116. 10.1038/ng.2405 PubMed DOI PMC

Tellegen, P. , & Laros, J. (1993). The construction and validation of a nonverbal test of intelligence: The revision of the Snijders‐Oomen tests. European Journal of Psychological Assessment, 9(2), 147–157.

Yoshihara, K. , Wang, Q. , Torres‐Garcia, W. , Zheng, S. , Vegesna, R. , Kim, H. , & Verhaak, R. G. (2015). The landscape and therapeutic relevance of cancer‐associated transcript fusions. Oncogene, 34(37), 4845–4854. 10.1038/onc.2014.406 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...