• This record comes from PubMed

Adaptive responses of animals to climate change are most likely insufficient

. 2019 Jul 23 ; 10 (1) : 3109. [epub] 20190723

Language English Country England, Great Britain Media electronic

Document type Journal Article, Meta-Analysis, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Systematic Review

Links

PubMed 31337752
PubMed Central PMC6650445
DOI 10.1038/s41467-019-10924-4
PII: 10.1038/s41467-019-10924-4
Knihovny.cz E-resources

Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.

A Skyline Drive Corning NY 14830 USA

Behavioural Ecology and Ecophysiology Group University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium

Behavioural Ecology Department of Biology Ludwig Maximilians University of Munich Großhaderner Str 2 Planegg Martinsried 82152 Germany

Biodiversity research Systematic Botany University of Potsdam Maulbeerallee 1 Berlin 14469 Germany

CEFE UMR 5175 CNRS Université de Montpellier Université Paul Valéry Montpellier EPHE 1919 route de Mende 34293 Montpellier Cedex 5 France

Centre for Ecology and Hydrology Bush Estate Penicuik EH26 0QB UK

CREAF 08193 Cerdanyola del Vallès Spain

CSIC Global Ecology Unit CREAF CSIC UAB Bellaterra 08193 Spain

Departamento de Zoologia Facultad de Ciencias Universidad de Granada 18071 Granada Spain

Department of Anatomy Cellular Biology and Zoology University of Extremadura 06006 Badajoz Spain

Department of Animal Ecology Netherlands Institute of Ecology P O Box 50 6700 AB Wageningen The Netherlands

Department of Biological Sciences Auburn University Auburn AL 36849 USA

Department of Biological Sciences Tokyo Metropolitan University 1 1 Minami Osawa Hachioji shi Tokyo 192 0397 Japan

Department of Biological Sciences University of Texas Rio Grande Valley Brownsville 78520 TX USA

Department of Biology Lund University 22362 Lund Sweden

Department of Biology Norwegian University of Science and Technology Høgskoleringen 5 7491 Trondheim Norway

Department of Biology University of Ottawa Ontario K1N 6N5 Canada

Department of Biology University of Turku Turku FI 20014 Finland

Department of Ecology Evolution and Organismal Biology Iowa State University Ames IA 50011 USA

Department of Ecology Technische Universität Berlin 12165 Berlin Germany

Department of Environmental Science Policy and Management and Museum of Vertebrate Zoology University of California Berkeley 94720 CA USA

Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich 8057 Switzerland

Department of Forest and Conservation Sciences 2424 Main Mall Vancouver V6T 1Z4 BC Canada

Department of Functional and Evolutionary Ecology Experimental Station of Arid Zones Ctra de Sacramento s n 04120 Almería Spain

Department of Zoology and Physiology University of Wyoming 1000 E University Avenue Laramie WY 82071 USA

Department of Zoology Faculty of Biology University of Seville Avenue Reina Mercedes 41012 Seville Spain

Department of Zoology Palacký University tř 17 listopadu 50 771 46 Olomouc Czech Republic

Department of Zoology University of Cambridge Downing Street Cambridge CB2 3EJ UK

Ecologie Systématique Evolution Université Paris Sud CNRS AgroParisTech Université Paris Saclay 91405 Orsay Cedex France

Edward Grey Institute Department of Zoology University of Oxford Oxford OX1 3PS UK

Estonian University of Life Sciences Kreutzwaldi 5 51014 Tartu Estonia

Evolutionary Ecology Group University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium

Graduate School of Simulation Studies University of Hyogo 7 1 28 Minatojima minamimachi Kobe 650 0047 Japan

Imperial College London Silwood Park Campus Buckurst Road Ascot SL5 7PY UK

Institute for Biochemistry and Biology Potsdam University Karl Liebknecht Strasse 24 25 14476 Potsdam Germany

Institute for Landscape and Open Space HSR Hochschule für Technik Oberseestrasse 10 Rapperswil 8640 Switzerland

Institute of Zoology Poznan University of Life Sciences Wojska Polskiego 71C 60 625 Poznań Poland

ISEM Université de Montpellier CNRS IRD EPHE Montpellier 34095 France

Lab of Ornithology Cornell University Ithaca NY 14850 USA

Leibniz Institute for Evolution and Biodiversity Science Museum für Naturkunde Invalidenstrasse 43 10115 Berlin Germany

Leibniz Institute for Zoo and Wildlife Research Alfred Kowalke Straße 17 10315 Berlin Germany

LPO Mission Rapaces 26 avenue Alain Guigue 13104 Mas Thibert France

Miromiro Drive Kaikoura 7300 New Zealand

Museu de Ciències Naturals de Barcelona P° Picasso s n Parc Ciutadella 08003 Barcelona Spain

Natural History Museum of Granollers Francesc Macià 52 08401 Granollers Spain

Norwegian Institute for Nature Research P O Box 5685 Torgarden 7485 Trondheim Norway

Organismal and Evolutionary Biology Research Programme Ecological Genetics Research Unit Faculty Biological and Environmental Sciences University of Helsinki 00014 Helsinki Finland

Research Domain 1 'Earth System Analysis' Potsdam Institute for Climate Impact Research P O Box 60 12 03 Telegrafenberg A31 Potsdam D 14412 Germany

Savannah River Ecology Laboratory University of Georgia Aiken SC 29802 USA

School of Biological Earth and Environmental Sciences University College Cork Cork T23 N73K Ireland

School of Biology Faculty of Biological Sciences University of Leeds Leeds LS2 9JT UK

School of Natural and Social Sciences University of Gloucestershire Swindon Road Cheltenham GL50 4AZ UK

Senckenberg Biodiversity and Climate Research Center Senckenberganlage 25 60325 Frankfurt Main Germany

Sorbonne Université Muséum National d'Histoire Naturelle CNRS CESCO UMR 7204 61 rue Buffon 75005 Paris France

Station of Experimental and Theoretical Ecology UMR 5321 CNRS and University Paul Sabatier 2 route du CNRS 09200 Moulis France

Swedish Museum of Natural History P O Box 50007 10405 Stockholm Sweden

See more in PubMed

Sakschewski B, et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Chang. 2016;6:1032–1036. doi: 10.1038/nclimate3109. DOI

Pacifici M, et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Chang. 2017;7:205–208. doi: 10.1038/nclimate3223. DOI

Thomas CD, et al. Extinction risk from climate change. Nature. 2004;427:145–148. doi: 10.1038/nature02121. PubMed DOI

Schindler DE, Hilborn R. Prediction, precaution, and policy under global change. Science. 2015;347:953–954. doi: 10.1126/science.1261824. PubMed DOI

Urban MC, et al. Improving the forecast for biodiversity under climate change. Science. 2016;353:1113–1122. doi: 10.1126/science.aaf4802. PubMed DOI

Hoffmann AA, Sgrò CM. Climate change and evolutionary adaptation. Nature. 2011;470:479–485. doi: 10.1038/nature09670. PubMed DOI

Charmantier A, et al. Adaptive phenotypic plasticity in response to climate change in a wild bird population. Science. 2008;320:800–803. doi: 10.1126/science.1157174. PubMed DOI

van Gils JA, et al. Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. Science. 2016;352:819–821. doi: 10.1126/science.aad6351. PubMed DOI

Post E, Forchhammer MC. Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch. Philos. Trans. R. Soc. Ser. B. 2008;363:2367–2373. doi: 10.1098/rstb.2007.2207. PubMed DOI PMC

Gienapp P, Teplitsky C, Alho JS, Mills JA, Merilä J. Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 2008;17:167–178. doi: 10.1111/j.1365-294X.2007.03413.x. PubMed DOI

Merilä J, Hendry AP. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 2014;7:1–14. doi: 10.1111/eva.12137. PubMed DOI PMC

Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42. doi: 10.1038/nature01286. PubMed DOI

Thackeray SJ, et al. Phenological sensitivity to climate across taxa and trophic levels. Nature. 2016;535:241–245. doi: 10.1038/nature18608. PubMed DOI

Yom-Tov Y, Yom-Tov S, Wright J, Thorne CJR, Du Feu R. Recent changes in body weight and wing length among some British passerine birds. Oikos. 2006;112:91–101. doi: 10.1111/j.0030-1299.2006.14183.x. DOI

Intergovernmental Panel on Climate Change, editor. Climate Change 2013 - The Physical Science Basis. Cambridge: Cambridge University Press; 2009.

Parmesan C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Chang. Biol. 2007;13:1860–1872. doi: 10.1111/j.1365-2486.2007.01404.x. DOI

Cohen Jeremy M., Lajeunesse Marc J., Rohr Jason R. A global synthesis of animal phenological responses to climate change. Nature Climate Change. 2018;8(3):224–228. doi: 10.1038/s41558-018-0067-3. DOI

Poloczanska ES, et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 2013;3:919–925. doi: 10.1038/nclimate1958. DOI

Gotanda KM, Correa C, Turcotte MM, Rolshausen G, Hendry AP. Linking macrotrends and microrates: re-evaluating microevolutionary support for Cope’s rule. Evolution. 2015;69:1345–1354. doi: 10.1111/evo.12653. PubMed DOI

Teplitsky C, Millien V. Climate warming and Bergmann’s rule through time: is there any evidence? Evol. Appl. 2014;7:156–168. doi: 10.1111/eva.12129. PubMed DOI PMC

Kattge J, et al. TRY—a global database of plant traits. Glob. Chang. Biol. 2011;17:2905–2935. doi: 10.1111/j.1365-2486.2011.02451.x. DOI

Salguero-Gómez R, et al. COMADRE: a global data base of animal demography. J. Anim. Ecol. 2016;85:371–384. doi: 10.1111/1365-2656.12482. PubMed DOI PMC

Jones KE, et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology. 2009;90:2648–2648. doi: 10.1890/08-1494.1. DOI

Kingsolver JG, et al. The strength of phenotypic selection in natural populations. Am. Nat. 2001;157:245–261. doi: 10.1086/319193. PubMed DOI

Kingsolver JG, Diamond SE. Phenotypic selection in natural populations: what limits directional selection? Am. Nat. 2011;177:346–357. doi: 10.1086/658341. PubMed DOI

Siepielski AM, DiBattista JD, Carlson SM. It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol. Lett. 2009;12:1261–1276. doi: 10.1111/j.1461-0248.2009.01381.x. PubMed DOI

Siepielski AM, et al. Precipitation drives global variation in natural selection. Science. 2017;355:959–962. doi: 10.1126/science.aag2773. PubMed DOI

Caruso CM, et al. What are the environmental determinants of phenotypic selection? A meta-analysis of experimental studies. Am. Nat. 2017;190:363–376. doi: 10.1086/692760. PubMed DOI

Lande R, Arnold SJ. The measurement of selection on correlated characters. Evolution. 1983;37:1210–1226. doi: 10.1111/j.1558-5646.1983.tb00236.x. PubMed DOI

Brown CJ, et al. Ecological and methodological drivers of species’ distribution and phenology responses to climate change. Glob. Chang. Biol. 2016;22:1548–1560. doi: 10.1111/gcb.13184. PubMed DOI

Post, E., Steinman, B. A. & Mann, M. E. Acceleration of phenological advance and warming with latitude over the past century. Sci. Rep. 8, 10.1038/s41598-018-22258-0 (2018). PubMed PMC

Miller-Rushing AJ, Lloyd-Evans TL, Primack RB, Satzinger P. Bird migration times, climate change, and changing population sizes. Glob. Chang. Biol. 2008;14:1959–1972. doi: 10.1111/j.1365-2486.2008.01619.x. DOI

Intergovernmental Panel on Climate Change, editor. Climate Change 2013 - The Physical Science Basis. Cambridge: Cambridge University Press; 2009.

Kharouba Heather M., Ehrlén Johan, Gelman Andrew, Bolmgren Kjell, Allen Jenica M., Travers Steve E., Wolkovich Elizabeth M. Global shifts in the phenological synchrony of species interactions over recent decades. Proceedings of the National Academy of Sciences. 2018;115(20):5211–5216. doi: 10.1073/pnas.1714511115. PubMed DOI PMC

Bϋrger R, Lynch M. Evolution and extinction in a changing environment—a quantitative-genetic analysis. Evolution. 1995;49:151–163. doi: 10.1111/j.1558-5646.1995.tb05967.x. PubMed DOI

Chevin Luis-Miguel, Lande Russell, Mace Georgina M. Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory. PLoS Biology. 2010;8(4):e1000357. doi: 10.1371/journal.pbio.1000357. PubMed DOI PMC

Estes S, Arnold SJ. Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. Am. Nat. 2007;169:227–244. doi: 10.1086/510633. PubMed DOI

VanDerWal J, et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Chang. 2012;3:239–243. doi: 10.1038/nclimate1688. DOI

Devictor V, et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Chang. 2012;2:121–124. doi: 10.1038/nclimate1347. DOI

Parmesan C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 2006;37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100. DOI

Pierson JC, et al. Incorporating evolutionary processes into population viability models. Conserv. Biol. 2015;29:755–764. doi: 10.1111/cobi.12431. PubMed DOI

Schiffers KH, Travis JMJ. ALADYN—a spatially explicit, allelic model for simulating adaptive dynamics. Ecography J. 2014;37:1288–1291. doi: 10.1111/ecog.00680. PubMed DOI PMC

Socolar Jacob B., Epanchin Peter N., Beissinger Steven R., Tingley Morgan W. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proceedings of the National Academy of Sciences. 2017;114(49):12976–12981. doi: 10.1073/pnas.1705897114. PubMed DOI PMC

Reed TE, Grøtan V, Jenouvrier S, Sæther B-E, Visser ME. Population growth in a wild bird is buffered against phenological mismatch. Science. 2013;340:488–491. doi: 10.1126/science.1232870. PubMed DOI

Rausher MD. The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness. Evolution (N. Y). 1992;46:616–626. PubMed

Vedder Oscar, Bouwhuis Sandra, Sheldon Ben C. Quantitative Assessment of the Importance of Phenotypic Plasticity in Adaptation to Climate Change in Wild Bird Populations. PLoS Biology. 2013;11(7):e1001605. doi: 10.1371/journal.pbio.1001605. PubMed DOI PMC

Burrows Michael T., Schoeman David S., Richardson Anthony J., Molinos Jorge García, Hoffmann Ary, Buckley Lauren B., Moore Pippa J., Brown Christopher J., Bruno John F., Duarte Carlos M., Halpern Benjamin S., Hoegh-Guldberg Ove, Kappel Carrie V., Kiessling Wolfgang, O’Connor Mary I., Pandolfi John M., Parmesan Camille, Sydeman William J., Ferrier Simon, Williams Kristen J., Poloczanska Elvira S. Geographical limits to species-range shifts are suggested by climate velocity. Nature. 2014;507(7493):492–495. doi: 10.1038/nature12976. PubMed DOI

Torda G, et al. Rapid adaptive responses to climate change in corals. Nat. Clim. Chang. 2017;7:627–636. doi: 10.1038/nclimate3374. DOI

Kruuk LEB. Estimating genetic parameters in natural populations using the ‘animal model’. Philos. Trans. R. Soc. Lond. Ser. B. 2004;359:873–890. doi: 10.1098/rstb.2003.1437. PubMed DOI PMC

Courtiol A, Tropf FC, Mills MC. When genes and environment disagree: Making sense of trends in recent human evolution. Proc. Natl. Acad. Sci. USA. 2016;113:7693–7695. doi: 10.1073/pnas.1608532113. PubMed DOI PMC

Kruuk LEB, Merilä J, Sheldon BC. When environmental variation short-circuits natural selection. Trends Ecol. Evol. 2003;18:207–209. doi: 10.1016/S0169-5347(03)00073-9. DOI

Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37. doi: 10.1038/nature01286. PubMed DOI

Lane JE, Kruuk LEB, Charmantier A, Murie JO, Dobson FS. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature. 2012;489:554–557. doi: 10.1038/nature11335. PubMed DOI

Miles WTS, et al. Quantifying full phenological event distributions reveals simultaneous advances, temporal stability and delays in spring and autumn migration timing in long-distance migratory birds. Glob. Chang. Biol. 2017;23:1400–1414. doi: 10.1111/gcb.13486. PubMed DOI

Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 2011;26:285–291. doi: 10.1016/j.tree.2011.03.005. PubMed DOI

Sheridan JA, Bickford D. Shrinking body size as an ecological response to climate change. Nat. Clim. Chang. 2011;1:401–406. doi: 10.1038/nclimate1259. DOI

Meiri S, Guy D, Dayan T, Simberloff D. Global change and carnivore body size: data are stasis. Glob. Ecol. Biogeogr. 2009;18:240–247. doi: 10.1111/j.1466-8238.2008.00437.x. DOI

Vasseur DA, et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. Biol. Sci. 2014;281:20132612. doi: 10.1098/rspb.2013.2612. PubMed DOI PMC

McLean N, Lawson CR, Leech DI, van de Pol M. Predicting when climate-driven phenotypic change affects population dynamics. Ecol. Lett. 2016;19:595–608. doi: 10.1111/ele.12599. PubMed DOI

Coulson T, et al. Modelling adaptive and nonadaptive responses of populations to environmental change. Am. Nat. 2017;3:313–336. doi: 10.1086/692542. PubMed DOI

Lajeunesse MJ. Facilitating systematic reviews, data extraction and meta-analysis with the metagear package for R. Methods Ecol. Evol. 2016;7:323–330. doi: 10.1111/2041-210X.12472. DOI

Vaida F, Blanchard S. Conditional Akaike information for mixed-effects models. Biometrika. 2005;92:351–370. doi: 10.1093/biomet/92.2.351. DOI

R. Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).

Rousset F, Ferdy J-B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography J. 2014;37:781–790. doi: 10.1111/ecog.00566. DOI

Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-analysis in Ecology and Evolution (Princeton University Press, Englewood Cliffs, 2013).

Goodenough AE, Hart AG, Elliot SL. What prevents phenological adjustment to climate change in migrant bird species? Evidence against the ‘arrival constraint’ hypothesis. Int. J. Biometeorol. 2011;55:97–102. doi: 10.1007/s00484-010-0312-6. PubMed DOI

Plard Floriane, Gaillard Jean-Michel, Coulson Tim, Hewison A. J. Mark, Delorme Daniel, Warnant Claude, Bonenfant Christophe. Mismatch Between Birth Date and Vegetation Phenology Slows the Demography of Roe Deer. PLoS Biology. 2014;12(4):e1001828. doi: 10.1371/journal.pbio.1001828. PubMed DOI PMC

Gienapp P, et al. Predicting demographically sustainable rates of adaptation: can great tit breeding time keep pace with climate change? Philos. Trans. R. Soc. Ser. B. 2012;368:20120289–20120289. doi: 10.1098/rstb.2012.0289. PubMed DOI PMC

Wilson S, Norris DR, Wilson AG, Arcese P. Breeding experience and population density affect the ability of a songbird to respond to future climate variation. Proc. R. Soc. Ser. B. 2007;274:2539–2545. doi: 10.1098/rspb.2007.0643. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...