• This record comes from PubMed

De Novo Heterozygous POLR2A Variants Cause a Neurodevelopmental Syndrome with Profound Infantile-Onset Hypotonia

. 2019 Aug 01 ; 105 (2) : 283-301. [epub] 20190725

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 31353023
PubMed Central PMC6699192
DOI 10.1016/j.ajhg.2019.06.016
PII: S0002-9297(19)30241-1
Knihovny.cz E-resources

The RNA polymerase II complex (pol II) is responsible for transcription of all ∼21,000 human protein-encoding genes. Here, we describe sixteen individuals harboring de novo heterozygous variants in POLR2A, encoding RPB1, the largest subunit of pol II. An iterative approach combining structural evaluation and mass spectrometry analyses, the use of S. cerevisiae as a model system, and the assessment of cell viability in HeLa cells allowed us to classify eleven variants as probably disease-causing and four variants as possibly disease-causing. The significance of one variant remains unresolved. By quantification of phenotypic severity, we could distinguish mild and severe phenotypic consequences of the disease-causing variants. Missense variants expected to exert only mild structural effects led to a malfunctioning pol II enzyme, thereby inducing a dominant-negative effect on gene transcription. Intriguingly, individuals carrying these variants presented with a severe phenotype dominated by profound infantile-onset hypotonia and developmental delay. Conversely, individuals carrying variants expected to result in complete loss of function, thus reduced levels of functional pol II from the normal allele, exhibited the mildest phenotypes. We conclude that subtle variants that are central in functionally important domains of POLR2A cause a neurodevelopmental syndrome characterized by profound infantile-onset hypotonia and developmental delay through a dominant-negative effect on pol-II-mediated transcription of DNA.

Center for Applied Genomics the Children's Hospital of Philadelphia Philadelphia PA 19104 USA

Center for Applied Genomics the Children's Hospital of Philadelphia Philadelphia PA 19104 USA; Division of Human Genetics the Children's Hospital of Philadelphia Philadelphia PA 19104 USA; Perelman School of Medicine University of Pennsylvania Philadelphia PA 19104 USA

Department of Biology and Medical Genetics Charles University 2nd Faculty of Medicine and University Hospital Motol 150 06 Prague Czech Republic

Department of Biomedical Genetics Wilhelmina Children's Hospital University Medical Center Utrecht Utrecht University 3584 EA Utrecht the Netherlands

Department of Clinical and Medical Genetics Our Lady's Hospital for Sick Children D12 N512 Dublin Ireland

Department of Clinical Genetics and Pediatrics Walter Reed National Military Medical Center Bethesda Maryland MD 20814 USA

Department of Clinical Genetics Erasmus Medical University Center Rotterdam 3000 CA Rotterdam the Netherlands

Department of Clinical Genetics Odense University Hospital 5000 Odense Denmark

Department of Clinical Genetics University Medical Center Groningen 9713 GZ Groningen the Netherlands

Department of Genetics and Reproduction Centre Hospitalier Universitaire de Grenoble 38700 Grenoble France

Department of Genetics Centre Hospitalier Universitaire de Dijon 21000 Dijon France

Department of Genetics Rouen University Hospital Centre de Référence Anomalies du Développement Normandy Centre for Genomic and Personalized Medicine 76000 Rouen France

Department of Genomic Medicine Oxford Centre for Genomic Medicine Oxford University Hospitals National Health Service Foundation Trust OX3 7LE Oxford UK

Department of Human Genetics Donders Institute for Brain Cognition and Behaviour Radboud University Medical Center Nijmegen 6525 HR Nijmegen the Netherlands

Department of Medical Genetics BC Children's Hospital Research Institute University of British Columbia BC V6H 3N1 Vancouver Canada

Department of Pathology Rouen University Hospital Centre de Référence Anomalies du Développement 76000 Rouen France

Department of Pediatrics Amphia Hospital Breda 4818 CK Breda the Netherlands

Department of Pediatrics Duke University School of Medicine Durham North Carolina NC 27710 USA

Department of Pediatrics Duke University School of Medicine Durham North Carolina NC 27710 USA; AstraZeneca Centre for Genomics Research Precision Medicine and Genomics IMED Biotech Unit AstraZeneca CB4 0WG Cambridge United Kingdom; Department of Medicine the University of Melbourne VIC 3010 Melbourne Australia

Department of Pediatrics Section of Genetics and Metabolism University of Arkansas for Medical Sciences Little Rock Arkansas AR 72223 USA

Department of Pediatrics Wilhelmina Children's Hospital University Medical Center Utrecht Utrecht University 3584 EA Utrecht the Netherlands

Department of Pediatrics Wilhelmina Children's Hospital University Medical Center Utrecht Utrecht University 3584 EA Utrecht the Netherlands; Department of Biomedical Genetics Wilhelmina Children's Hospital University Medical Center Utrecht Utrecht University 3584 EA Utrecht the Netherlands; German Cancer Consortium 79106 Heidelberg Germany

Department of Translational Medicine Federico 2 University 80126 Naples Italy; Telethon Institute of Genetics and Medicine Pozzuoli 80126 Naples Italy

Departments of Pediatrics and Human Genetics University of Michigan Medical School Ann Arbor Michigan MI 48109 USA

Division of Human Genetics the Children's Hospital of Philadelphia Philadelphia PA 19104 USA; Mitochondrial Medicine Frontier Program Division of Human Genetics the Children's Hospital of Philadelphia PA 19104 Philadelphia USA

Expertise Center for Structural Biology University Medical Center Utrecht Utrecht University 3584 CT Utrecht the Netherlands; Molecular Cancer Research Center for Molecular Medicine University Medical Center Utrecht Utrecht University Oncode Institute 3584 CT Utrecht the Netherlands

H C Andersen Children Hospital Odense University Hospital 5000 Odense Denmark

Mitochondrial Medicine Frontier Program Division of Human Genetics the Children's Hospital of Philadelphia PA 19104 Philadelphia USA

Molecular Cancer Research Center for Molecular Medicine University Medical Center Utrecht Utrecht University Oncode Institute 3584 CT Utrecht the Netherlands

National Institute for Health Research Oxford Biomedical Research Centre Wellcome Centre for Human Genetics University of Oxford OX3 7BN Oxford UK

Regenerative Medicine Center and Center for Molecular Medicine University Medical Center Utrecht Utrecht University 3584 CT Utrecht the Netherlands; Department of Urology University Medical Center Freiburg University of Freiburg 79110 Freiburg Germany

Regenerative Medicine Center and Center for Molecular Medicine University Medical Center Utrecht Utrecht University 3584 CT Utrecht the Netherlands; German Cancer Consortium 79106 Heidelberg Germany

See more in PubMed

Wintzerith M., Acker J., Vicaire S., Vigneron M., Kedinger C. Complete sequence of the human RNA polymerase II largest subunit. Nucleic Acids Res. 1992;20:910. PubMed PMC

Mita K., Tsuji H., Morimyo M., Takahashi E., Nenoi M., Ichimura S., Yamauchi M., Hongo E., Hayashi A. The human gene encoding the largest subunit of RNA polymerase II. Gene. 1995;159:285–286. PubMed

Kornberg R.D. Eukaryotic transcriptional control. Trends Cell Biol. 1999;9:M46–M49. PubMed

Roeder R.G., Rutter W.J. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature. 1969;224:234–237. PubMed

Thomas M.C., Chiang C.M. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 2006;41:105–178. PubMed

Sainsbury S., Bernecky C., Cramer P. Structural basis of transcription initiation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 2015;16:129–143. PubMed

Bushnell D.A., Westover K.D., Davis R.E., Kornberg R.D. Structural basis of transcription: An RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science. 2004;303:983–988. PubMed

Sainsbury S., Niesser J., Cramer P. Structure and function of the initially transcribing RNA polymerase II-TFIIB complex. Nature. 2013;493:437–440. PubMed

Plaschka C., Larivière L., Wenzeck L., Seizl M., Hemann M., Tegunov D., Petrotchenko E.V., Borchers C.H., Baumeister W., Herzog F. Architecture of the RNA polymerase II-Mediator core initiation complex. Nature. 2015;518:376–380. PubMed

Robinson P.J., Trnka M.J., Bushnell D.A., Davis R.E., Mattei P.J., Burlingame A.L., Kornberg R.D. Structure of a complete mediator-RNA polymerase II pre-initiation complex. Cell. 2016;166:1411–1422.e16. PubMed PMC

Westover K.D., Bushnell D.A., Kornberg R.D. Structural basis of transcription: Nucleotide selection by rotation in the RNA polymerase II active center. Cell. 2004;119:481–489. PubMed

Cramer P. RNA polymerase II structure: From core to functional complexes. Curr. Opin. Genet. Dev. 2004;14:218–226. PubMed

Cheung A.C., Sainsbury S., Cramer P. Structural basis of initial RNA polymerase II transcription. EMBO J. 2011;30:4755–4763. PubMed PMC

Gnatt A.L., Cramer P., Fu J., Bushnell D.A., Kornberg R.D. Structural basis of transcription: An RNA polymerase II elongation complex at 3.3 A resolution. Science. 2001;292:1876–1882. PubMed

Jonkers I., Lis J.T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 2015;16:167–177. PubMed PMC

Ehara H., Yokoyama T., Shigematsu H., Yokoyama S., Shirouzu M., Sekine S.I. Structure of the complete elongation complex of RNA polymerase II with basal factors. Science. 2017;357:921–924. PubMed

Kettenberger H., Armache K.J., Cramer P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell. 2004;16:955–965. PubMed

Sydow J.F., Brueckner F., Cheung A.C., Damsma G.E., Dengl S., Lehmann E., Vassylyev D., Cramer P. Structural basis of transcription: Mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol. Cell. 2009;34:710–721. PubMed

Cheung A.C., Cramer P. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature. 2011;471:249–253. PubMed

Walmacq C., Cheung A.C., Kireeva M.L., Lubkowska L., Ye C., Gotte D., Strathern J.N., Carell T., Cramer P., Kashlev M. Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. Mol. Cell. 2012;46:18–29. PubMed PMC

Steurer B., Janssens R.C., Geverts B., Geijer M.E., Wienholz F., Theil A.F., Chang J., Dealy S., Pothof J., van Cappellen W.A. Live-cell analysis of endogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA Polymerase II. Proc. Natl. Acad. Sci. USA. 2018;115:E4368–E4376. PubMed PMC

Wang D., Bushnell D.A., Westover K.D., Kaplan C.D., Kornberg R.D. Structural basis of transcription: Role of the trigger loop in substrate specificity and catalysis. Cell. 2006;127:941–954. PubMed PMC

Kaplan C.D., Jin H., Zhang I.L., Belyanin A. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo. PLoS Genet. 2012;8:e1002627. PubMed PMC

Timmers H.T.M., Tora L. Transcription buffering: A balancing act between mRNA synthesis and mRNA degradation. Mol. Cell. 2018;72:10–17. PubMed

Sugaya K. Amino acid substitution of the largest subunit of yeast RNA polymerase II: Effect of a temperature-sensitive mutation related to G1 cell cycle arrest. Curr. Microbiol. 2003;47:159–162. PubMed

Zhang Q.Q., Li F., Fu Z.Y., Liu X.B., Yuan K., Fang Y., Liu Y., Li G., Zhang X.S., Chong K. Intact Arabidopsis RPB1 functions in stem cell niches maintenance and cell cycling control. Plant J. 2018;95:150–167. PubMed

Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., ACMG Laboratory Quality Assurance Committee Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–424. PubMed PMC

Lelieveld S.H., Reijnders M.R.F., Pfundt R., Yntema H.G., Kamsteeg E.J., de Vries P., de Vries B.B., Willemsen M.H., Kleefstra T., Löhner K. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. Neurosci. 2016;19:1194–1196. PubMed

Lek M., Karczewski K.J., Minikel E.V., Samocha K.E., Banks E., Fennell T., O’Donnell-Luria A.H., Ware J.S., Hill A.J., Cummings B.B., Exome Aggregation Consortium Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. PubMed PMC

Sobreira N., Schiettecatte F., Valle D., Hamosh A. GeneMatcher: A matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 2015;36:928–930. PubMed PMC

Gray O.P. The Denver scale. Dev. Med. Child Neurol. 1972;14:666–667. PubMed

Kircher M., Witten D.M., Jain P., O’Roak B.J., Cooper G.M., Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014;46:310–315. PubMed PMC

Schomburg D., Reichelt J. BRAGI – A comprehensive protein modeling program system. J. Mol. Graph. 1988;6:161–165.

Kraulis P.J. Molscript – A program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 1991;24:946–950.

Merritt E.A., Murphy M.E.P. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 1994;50:869–873. PubMed

Sugaya K., Vigneron M., Cook P.R. Mammalian cell lines expressing functional RNA polymerase II tagged with the green fluorescent protein. J. Cell Sci. 2000;113:2679–2683. PubMed

Sugaya K., Sasanuma S., Cook P.R., Mita K. A mutation in the largest (catalytic) subunit of RNA polymerase II and its relation to the arrest of the cell cycle in G(1) phase. Gene. 2001;274:77–81. PubMed

Malagon F., Kireeva M.L., Shafer B.K., Lubkowska L., Kashlev M., Strathern J.N. Mutations in the Saccharomyces cerevisiae RPB1 gene conferring hypersensitivity to 6-azauracil. Genetics. 2006;172:2201–2209. PubMed PMC

Nguyen V.T., Giannoni F., Dubois M.F., Seo S.J., Vigneron M., Kédinger C., Bensaude O. In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin. Nucleic Acids Res. 1996;24:2924–2929. PubMed PMC

Baas R., Lelieveld D., van Teeffelen H., Lijnzaad P., Castelijns B., van Schaik F.M., Vermeulen M., Egan D.A., Timmers H.T., de Graaf P. A novel microscopy-based high-throughput screening method to identify proteins that regulate global histone modification levels. J. Biomol. Screen. 2014;19:287–296. PubMed

Pereira L.A., van der Knaap J.A., van den Boom V., van den Heuvel F.A., Timmers H.T. TAF(II)170 interacts with the concave surface of TATA-binding protein to inhibit its DNA binding activity. Mol. Cell. Biol. 2001;21:7523–7534. PubMed PMC

Baymaz H.I., Spruijt C.G., Vermeulen M. Identifying nuclear protein-protein interactions using GFP affinity purification and SILAC-based quantitative mass spectrometry. Methods Mol. Biol. 2014;1188:207–226. PubMed

Rappsilber J., Ishihama Y., Mann M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 2003;75:663–670. PubMed

Haijes H.A., Jaeken J., Foulquier F., van Hasselt P.M. Hypothesis: Lobe A (COG1-4)-CDG causes a more severe phenotype than lobe B (COG5-8)-CDG. J. Med. Genet. 2018;55:137–142. PubMed

Lelieveld S.H., Wiel L., Venselaar H., Pfundt R., Vriend G., Veltman J.A., Brunner H.G., Vissers L.E.L.M., Gilissen C. Spatial clustering of de novo missense mutations identifies candidate neurodevelopmental disorder-associated genes. Am. J. Hum. Genet. 2017;101:478–484. PubMed PMC

Havrilla J.M., Pedersen B.S., Layer R.M., Quinlan A.R. A map of constrained coding regions in the human genome. Nat. Genet. 2019;51:88–95. PubMed PMC

Scafe C., Chao D., Lopes J., Hirsch J.P., Henry S., Young R.A. RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals. Nature. 1990;347:491–494. PubMed

Eick D., Geyer M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 2013;113:8456–8490. PubMed

Nonet M., Sweetser D., Young R.A. Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell. 1987;50:909–915. PubMed

Rosonina E., Blencowe B.J. Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3′-end cleavage. RNA. 2004;10:581–589. PubMed PMC

Bernard G., Vanderver A. POLR3-related leukodystrophy. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Stephens K., Amemiya A., editors. GeneReviews. 2012. Updated: May 11, 2017.

Dorboz I., Dumay-Odelot H., Boussaid K., Bouyacoub Y., Barreau P., Samaan S., Jmel H., Eymard-Pierre E., Cances C., Bar C. Mutation in POLR3K causes hypomyelinating leukodystrophy and abnormal ribosomal RNA regulation. Neurol Genet. 2018;4:e289. PubMed PMC

Weaver K.N., Watt K.E.N., Hufnagel R.B., Navajas Acedo J., Linscott L.L., Sund K.L., Bender P.L., König R., Lourenco C.M., Hehr U. Acrofacial dysostosis, Cincinatti type, a mandibulofacial dysostosis syndrome with limb anomalies, is caused by POLR1A dysfunction. Am. J. Hum. Genet. 2015;96:765–774. PubMed PMC

Kara B., Köroğlu Ç., Peltonen K., Steinberg R.C., Maraş Genç H., Hölttä-Vuori M., Güven A., Kanerva K., Kotil T., Solakoğlu S. Severe neurodegenerative disease in brothers with homozygous mutation in POLR1A. Eur. J. Hum. Genet. 2017;25:315–323. PubMed PMC

Jay A.M., Conway R.L., Thiffault I., Saunders C., Farrow E., Adams J., Toriello H.V. Neonatal progeroid syndrome associated with biallelic truncating variants in POLR3A. Am. J. Med. Genet. A. 2016;170:3343–3346. PubMed

Rydning S.L., Koht J., Sheng Y., Sowa P., Hjorthaug H.S., Wedding I.M., Erichsen A.K., Hovden I.A., Backe P.H., Tallaksen C.M.E. Biallelic POLR3A variants confirmed as a frequent cause of hereditary ataxia and spastic paraparesis. Brain. 2019;142:e12. PubMed PMC

Minnerop M, Kurzwelly D, Wagner H, Schüle R, Ramirez A. Reply: Biallelic POLR3A variants confirmed as a frequent cause of hereditary ataxia and spastic paraparesis. Brain 142, e13. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...