De Novo Heterozygous POLR2A Variants Cause a Neurodevelopmental Syndrome with Profound Infantile-Onset Hypotonia
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31353023
PubMed Central
PMC6699192
DOI
10.1016/j.ajhg.2019.06.016
PII: S0002-9297(19)30241-1
Knihovny.cz E-resources
- Keywords
- POLR2A, RNA polymerase II complex, RPB1, de novo variants, desert Z score, desert regions, dominant-negative effect, haplo-insufficiency, infantile-onset hypotonia, neurodevelopmental syndrome,
- MeSH
- Child MeSH
- DNA-Directed RNA Polymerases genetics MeSH
- Phenotype MeSH
- HeLa Cells MeSH
- Heterozygote MeSH
- Humans MeSH
- Adolescent MeSH
- Mutation * MeSH
- Neurodevelopmental Disorders enzymology genetics pathology MeSH
- Child, Preschool MeSH
- Saccharomyces cerevisiae genetics growth & development metabolism MeSH
- Muscle Hypotonia enzymology genetics pathology MeSH
- Age of Onset MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA-Directed RNA Polymerases MeSH
- POLR2A RNA polymerase, human MeSH Browser
The RNA polymerase II complex (pol II) is responsible for transcription of all ∼21,000 human protein-encoding genes. Here, we describe sixteen individuals harboring de novo heterozygous variants in POLR2A, encoding RPB1, the largest subunit of pol II. An iterative approach combining structural evaluation and mass spectrometry analyses, the use of S. cerevisiae as a model system, and the assessment of cell viability in HeLa cells allowed us to classify eleven variants as probably disease-causing and four variants as possibly disease-causing. The significance of one variant remains unresolved. By quantification of phenotypic severity, we could distinguish mild and severe phenotypic consequences of the disease-causing variants. Missense variants expected to exert only mild structural effects led to a malfunctioning pol II enzyme, thereby inducing a dominant-negative effect on gene transcription. Intriguingly, individuals carrying these variants presented with a severe phenotype dominated by profound infantile-onset hypotonia and developmental delay. Conversely, individuals carrying variants expected to result in complete loss of function, thus reduced levels of functional pol II from the normal allele, exhibited the mildest phenotypes. We conclude that subtle variants that are central in functionally important domains of POLR2A cause a neurodevelopmental syndrome characterized by profound infantile-onset hypotonia and developmental delay through a dominant-negative effect on pol-II-mediated transcription of DNA.
Center for Applied Genomics the Children's Hospital of Philadelphia Philadelphia PA 19104 USA
Department of Clinical Genetics Odense University Hospital 5000 Odense Denmark
Department of Genetics Centre Hospitalier Universitaire de Dijon 21000 Dijon France
Department of Pediatrics Amphia Hospital Breda 4818 CK Breda the Netherlands
Department of Pediatrics Duke University School of Medicine Durham North Carolina NC 27710 USA
H C Andersen Children Hospital Odense University Hospital 5000 Odense Denmark
See more in PubMed
Wintzerith M., Acker J., Vicaire S., Vigneron M., Kedinger C. Complete sequence of the human RNA polymerase II largest subunit. Nucleic Acids Res. 1992;20:910. PubMed PMC
Mita K., Tsuji H., Morimyo M., Takahashi E., Nenoi M., Ichimura S., Yamauchi M., Hongo E., Hayashi A. The human gene encoding the largest subunit of RNA polymerase II. Gene. 1995;159:285–286. PubMed
Kornberg R.D. Eukaryotic transcriptional control. Trends Cell Biol. 1999;9:M46–M49. PubMed
Roeder R.G., Rutter W.J. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature. 1969;224:234–237. PubMed
Thomas M.C., Chiang C.M. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 2006;41:105–178. PubMed
Sainsbury S., Bernecky C., Cramer P. Structural basis of transcription initiation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 2015;16:129–143. PubMed
Bushnell D.A., Westover K.D., Davis R.E., Kornberg R.D. Structural basis of transcription: An RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science. 2004;303:983–988. PubMed
Sainsbury S., Niesser J., Cramer P. Structure and function of the initially transcribing RNA polymerase II-TFIIB complex. Nature. 2013;493:437–440. PubMed
Plaschka C., Larivière L., Wenzeck L., Seizl M., Hemann M., Tegunov D., Petrotchenko E.V., Borchers C.H., Baumeister W., Herzog F. Architecture of the RNA polymerase II-Mediator core initiation complex. Nature. 2015;518:376–380. PubMed
Robinson P.J., Trnka M.J., Bushnell D.A., Davis R.E., Mattei P.J., Burlingame A.L., Kornberg R.D. Structure of a complete mediator-RNA polymerase II pre-initiation complex. Cell. 2016;166:1411–1422.e16. PubMed PMC
Westover K.D., Bushnell D.A., Kornberg R.D. Structural basis of transcription: Nucleotide selection by rotation in the RNA polymerase II active center. Cell. 2004;119:481–489. PubMed
Cramer P. RNA polymerase II structure: From core to functional complexes. Curr. Opin. Genet. Dev. 2004;14:218–226. PubMed
Cheung A.C., Sainsbury S., Cramer P. Structural basis of initial RNA polymerase II transcription. EMBO J. 2011;30:4755–4763. PubMed PMC
Gnatt A.L., Cramer P., Fu J., Bushnell D.A., Kornberg R.D. Structural basis of transcription: An RNA polymerase II elongation complex at 3.3 A resolution. Science. 2001;292:1876–1882. PubMed
Jonkers I., Lis J.T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 2015;16:167–177. PubMed PMC
Ehara H., Yokoyama T., Shigematsu H., Yokoyama S., Shirouzu M., Sekine S.I. Structure of the complete elongation complex of RNA polymerase II with basal factors. Science. 2017;357:921–924. PubMed
Kettenberger H., Armache K.J., Cramer P. Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell. 2004;16:955–965. PubMed
Sydow J.F., Brueckner F., Cheung A.C., Damsma G.E., Dengl S., Lehmann E., Vassylyev D., Cramer P. Structural basis of transcription: Mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Mol. Cell. 2009;34:710–721. PubMed
Cheung A.C., Cramer P. Structural basis of RNA polymerase II backtracking, arrest and reactivation. Nature. 2011;471:249–253. PubMed
Walmacq C., Cheung A.C., Kireeva M.L., Lubkowska L., Ye C., Gotte D., Strathern J.N., Carell T., Cramer P., Kashlev M. Mechanism of translesion transcription by RNA polymerase II and its role in cellular resistance to DNA damage. Mol. Cell. 2012;46:18–29. PubMed PMC
Steurer B., Janssens R.C., Geverts B., Geijer M.E., Wienholz F., Theil A.F., Chang J., Dealy S., Pothof J., van Cappellen W.A. Live-cell analysis of endogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA Polymerase II. Proc. Natl. Acad. Sci. USA. 2018;115:E4368–E4376. PubMed PMC
Wang D., Bushnell D.A., Westover K.D., Kaplan C.D., Kornberg R.D. Structural basis of transcription: Role of the trigger loop in substrate specificity and catalysis. Cell. 2006;127:941–954. PubMed PMC
Kaplan C.D., Jin H., Zhang I.L., Belyanin A. Dissection of Pol II trigger loop function and Pol II activity-dependent control of start site selection in vivo. PLoS Genet. 2012;8:e1002627. PubMed PMC
Timmers H.T.M., Tora L. Transcription buffering: A balancing act between mRNA synthesis and mRNA degradation. Mol. Cell. 2018;72:10–17. PubMed
Sugaya K. Amino acid substitution of the largest subunit of yeast RNA polymerase II: Effect of a temperature-sensitive mutation related to G1 cell cycle arrest. Curr. Microbiol. 2003;47:159–162. PubMed
Zhang Q.Q., Li F., Fu Z.Y., Liu X.B., Yuan K., Fang Y., Liu Y., Li G., Zhang X.S., Chong K. Intact Arabidopsis RPB1 functions in stem cell niches maintenance and cell cycling control. Plant J. 2018;95:150–167. PubMed
Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., ACMG Laboratory Quality Assurance Committee Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–424. PubMed PMC
Lelieveld S.H., Reijnders M.R.F., Pfundt R., Yntema H.G., Kamsteeg E.J., de Vries P., de Vries B.B., Willemsen M.H., Kleefstra T., Löhner K. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. Neurosci. 2016;19:1194–1196. PubMed
Lek M., Karczewski K.J., Minikel E.V., Samocha K.E., Banks E., Fennell T., O’Donnell-Luria A.H., Ware J.S., Hill A.J., Cummings B.B., Exome Aggregation Consortium Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291. PubMed PMC
Sobreira N., Schiettecatte F., Valle D., Hamosh A. GeneMatcher: A matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 2015;36:928–930. PubMed PMC
Gray O.P. The Denver scale. Dev. Med. Child Neurol. 1972;14:666–667. PubMed
Kircher M., Witten D.M., Jain P., O’Roak B.J., Cooper G.M., Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014;46:310–315. PubMed PMC
Schomburg D., Reichelt J. BRAGI – A comprehensive protein modeling program system. J. Mol. Graph. 1988;6:161–165.
Kraulis P.J. Molscript – A program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 1991;24:946–950.
Merritt E.A., Murphy M.E.P. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 1994;50:869–873. PubMed
Sugaya K., Vigneron M., Cook P.R. Mammalian cell lines expressing functional RNA polymerase II tagged with the green fluorescent protein. J. Cell Sci. 2000;113:2679–2683. PubMed
Sugaya K., Sasanuma S., Cook P.R., Mita K. A mutation in the largest (catalytic) subunit of RNA polymerase II and its relation to the arrest of the cell cycle in G(1) phase. Gene. 2001;274:77–81. PubMed
Malagon F., Kireeva M.L., Shafer B.K., Lubkowska L., Kashlev M., Strathern J.N. Mutations in the Saccharomyces cerevisiae RPB1 gene conferring hypersensitivity to 6-azauracil. Genetics. 2006;172:2201–2209. PubMed PMC
Nguyen V.T., Giannoni F., Dubois M.F., Seo S.J., Vigneron M., Kédinger C., Bensaude O. In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin. Nucleic Acids Res. 1996;24:2924–2929. PubMed PMC
Baas R., Lelieveld D., van Teeffelen H., Lijnzaad P., Castelijns B., van Schaik F.M., Vermeulen M., Egan D.A., Timmers H.T., de Graaf P. A novel microscopy-based high-throughput screening method to identify proteins that regulate global histone modification levels. J. Biomol. Screen. 2014;19:287–296. PubMed
Pereira L.A., van der Knaap J.A., van den Boom V., van den Heuvel F.A., Timmers H.T. TAF(II)170 interacts with the concave surface of TATA-binding protein to inhibit its DNA binding activity. Mol. Cell. Biol. 2001;21:7523–7534. PubMed PMC
Baymaz H.I., Spruijt C.G., Vermeulen M. Identifying nuclear protein-protein interactions using GFP affinity purification and SILAC-based quantitative mass spectrometry. Methods Mol. Biol. 2014;1188:207–226. PubMed
Rappsilber J., Ishihama Y., Mann M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 2003;75:663–670. PubMed
Haijes H.A., Jaeken J., Foulquier F., van Hasselt P.M. Hypothesis: Lobe A (COG1-4)-CDG causes a more severe phenotype than lobe B (COG5-8)-CDG. J. Med. Genet. 2018;55:137–142. PubMed
Lelieveld S.H., Wiel L., Venselaar H., Pfundt R., Vriend G., Veltman J.A., Brunner H.G., Vissers L.E.L.M., Gilissen C. Spatial clustering of de novo missense mutations identifies candidate neurodevelopmental disorder-associated genes. Am. J. Hum. Genet. 2017;101:478–484. PubMed PMC
Havrilla J.M., Pedersen B.S., Layer R.M., Quinlan A.R. A map of constrained coding regions in the human genome. Nat. Genet. 2019;51:88–95. PubMed PMC
Scafe C., Chao D., Lopes J., Hirsch J.P., Henry S., Young R.A. RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals. Nature. 1990;347:491–494. PubMed
Eick D., Geyer M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 2013;113:8456–8490. PubMed
Nonet M., Sweetser D., Young R.A. Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell. 1987;50:909–915. PubMed
Rosonina E., Blencowe B.J. Analysis of the requirement for RNA polymerase II CTD heptapeptide repeats in pre-mRNA splicing and 3′-end cleavage. RNA. 2004;10:581–589. PubMed PMC
Bernard G., Vanderver A. POLR3-related leukodystrophy. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Stephens K., Amemiya A., editors. GeneReviews. 2012. Updated: May 11, 2017.
Dorboz I., Dumay-Odelot H., Boussaid K., Bouyacoub Y., Barreau P., Samaan S., Jmel H., Eymard-Pierre E., Cances C., Bar C. Mutation in POLR3K causes hypomyelinating leukodystrophy and abnormal ribosomal RNA regulation. Neurol Genet. 2018;4:e289. PubMed PMC
Weaver K.N., Watt K.E.N., Hufnagel R.B., Navajas Acedo J., Linscott L.L., Sund K.L., Bender P.L., König R., Lourenco C.M., Hehr U. Acrofacial dysostosis, Cincinatti type, a mandibulofacial dysostosis syndrome with limb anomalies, is caused by POLR1A dysfunction. Am. J. Hum. Genet. 2015;96:765–774. PubMed PMC
Kara B., Köroğlu Ç., Peltonen K., Steinberg R.C., Maraş Genç H., Hölttä-Vuori M., Güven A., Kanerva K., Kotil T., Solakoğlu S. Severe neurodegenerative disease in brothers with homozygous mutation in POLR1A. Eur. J. Hum. Genet. 2017;25:315–323. PubMed PMC
Jay A.M., Conway R.L., Thiffault I., Saunders C., Farrow E., Adams J., Toriello H.V. Neonatal progeroid syndrome associated with biallelic truncating variants in POLR3A. Am. J. Med. Genet. A. 2016;170:3343–3346. PubMed
Rydning S.L., Koht J., Sheng Y., Sowa P., Hjorthaug H.S., Wedding I.M., Erichsen A.K., Hovden I.A., Backe P.H., Tallaksen C.M.E. Biallelic POLR3A variants confirmed as a frequent cause of hereditary ataxia and spastic paraparesis. Brain. 2019;142:e12. PubMed PMC
Minnerop M, Kurzwelly D, Wagner H, Schüle R, Ramirez A. Reply: Biallelic POLR3A variants confirmed as a frequent cause of hereditary ataxia and spastic paraparesis. Brain 142, e13. PubMed