Utility of chemokines CCL2, CXCL8, 10 and 13 and interleukin 6 in the pediatric cohort for the recognition of neuroinflammation and in the context of traditional cerebrospinal fluid neuroinflammatory biomarkers
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31356620
PubMed Central
PMC6663008
DOI
10.1371/journal.pone.0219987
PII: PONE-D-19-01832
Knihovny.cz E-zdroje
- MeSH
- biologické markery krev mozkomíšní mok MeSH
- chemokin CCL2 krev mozkomíšní mok MeSH
- chemokin CXCL10 krev mozkomíšní mok MeSH
- chemokin CXCL13 krev mozkomíšní mok MeSH
- chemokiny krev mozkomíšní mok MeSH
- dítě MeSH
- interleukin-6 krev mozkomíšní mok MeSH
- interleukin-8 krev mozkomíšní mok MeSH
- krevní obraz MeSH
- lidé MeSH
- mladiství MeSH
- nemoci centrálního nervového systému mozkomíšní mok diagnóza imunologie MeSH
- předškolní dítě MeSH
- ROC křivka MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- CCL2 protein, human MeSH Prohlížeč
- chemokin CCL2 MeSH
- chemokin CXCL10 MeSH
- chemokin CXCL13 MeSH
- chemokiny MeSH
- CXCL10 protein, human MeSH Prohlížeč
- CXCL13 protein, human MeSH Prohlížeč
- CXCL8 protein, human MeSH Prohlížeč
- IL6 protein, human MeSH Prohlížeč
- interleukin-6 MeSH
- interleukin-8 MeSH
BACKGROUND: The recognition of active inflammation in the central nervous system (CNS) in the absence of infectious agents is challenging. The present study aimed to determine the diagnostic relevance of five selected chemo/cytokines in the recognition of CNS inflammation and in the context of traditional cerebrospinal fluid (CSF) biomarkers (white blood cell [WBC] counts, oligoclonal bands, protein levels, CSF/serum albumin ratios) and clinical diagnoses. METHODS: C-C and C-X-C motif ligands (CCL2, CXCL8, 10 and 13) and interleukin (IL) 6 levels in the CSF and serum from 37 control and 87 symptomatic children with ten different (mostly noninfectious) inflammatory CNS disorders (16 of which had follow-up samples after recovery) were determined using Luminex multiple bead technology and software. Nonparametric tests were used; p < 0.05 was considered statistically significant. Receiver operating characteristic curves were constructed to analyze controls and 1) all symptomatic samples or 2) symptomatic samples without CSF pleocytosis. RESULTS: Compared with the control CSF samples, levels of all investigated chemo/cytokines were increased in symptomatic CSF samples, and only IL-6 remained elevated in recovery samples (p ≤ 0.001). CSF CXCL-13 levels (> 10.9 pg/mL) were the best individual discriminatory criterion to differentiate neuroinflammation (specificity/sensitivity: 97/72% and 97/61% for samples without pleocytosis), followed by CSF WBC counts (specificity/sensitivity: 97/62%). The clinical utility of the remaining CSF chemo/cytokine levels was determined in descending order of sensitivities corresponding to thresholds that ensured 97% specificity for neuroinflammation in samples without pleocytosis (pg/mL; sensitivity %): IL-6 (3.8; 34), CXCL8 (32; 26), CXCL10 (317; 24) and CCL2 (387; 10). Different diagnosis-related patterns of CSF chemo/cytokines were observed. CONCLUSIONS: The increased CSF level of CXCL13 was the marker with the greatest predictive utility for the general recognition of neuroinflammation among all of the individually investigated biomarkers. The potential clinical utility of chemo/cytokines in the differential diagnosis of neuroinflammatory diseases was identified.
Zobrazit více v PubMed
Wells E, Hacohen Y, Waldman A, Tillema JM, Soldatos A, Ances B, et al. Neuroimmune disorders of the central nervous system in children in the molecular era. Nat Rev Neurol. 2018. July; 10.1038/s41582-018-0024-9 PubMed DOI
Freedman MS, Thompson EJ, Deisenhammer F, Giovannoni G, Grimsley G, Keir G, et al. Recommended standard of cerebrospinal fluid analysis in the diagnosis of multiple sclerosis: a consensus statement. Arch Neurol. 2005. 10.1001/archneur.62.6.865 PubMed DOI
Domingues RB, Fernandes GBP, Leite FBVM, Tilbery CP, Thomaz RB, Silva GS, et al. The cerebrospinal fluid in multiple sclerosis: far beyond the bands. Einstein; (Sao Paulo: ). 2017. Jan-Mar; 10.1590/S1679-45082017RW3706 PubMed DOI PMC
Engelhardt B, Laschinger M, Vajkoczy P. 3—Investigation of Molecular Mechanisms Involved in T Lymphocyte Recruitment across the Blood-Spinal Cord and Brain Barriers in Health and Disease In: Shanker Sharma H, Jan Westman J editors. Blood-Spinal Cord and Brain Barriers in Health and Disease. San Diego: Academic Press; 2004. p. 19–31.I
Irani SR, Bera K, Waters P, Zuliani L, Maxwell S, Zandi MS, et al. N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain. 2010. June; 10.1093/brain/awq113 PubMed DOI PMC
Matas SL, Glehn Fv, Fernandes GB, Soares CA. Cerebrospinal fluid analysis in the context of CNS demyelinating diseases. Arq Neuropsiquiatr. 2013. September; 10.1590/0004-282X20130151 PubMed DOI
Baunbæk EG, Ertner G, Langholz KK, Vestergaard JA, Benfield TL, Brandt CT. Cerebrospinal fluid pleocytosis in infectious and noninfectious central nervous system disease: A retrospective cohort study. Medicine (Baltimore). 2017. May; 10.1097/MD.0000000000006686 PubMed DOI PMC
Bromley SK, Mempel TR, Luster AD. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat Immunol. 2008. September; 10.1038/ni.f.213 PubMed DOI
Ransohoff RM. Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. Immunity. 2009. November 20; 10.1016/j.immuni.2009.09.010 PubMed DOI PMC
Groom JR, Luster AD. CXCR3 in T cell function. Exp Cell Res. 2011. March 10; 10.1016/j.yexcr.2010.12.017 PubMed DOI PMC
Muehlinghaus G, Cigliano L, Huehn S, Peddinghaus A, Leyendeckers H, Hauser AE, et al. Regulation of CXCR3 and CXCR4 expression during terminal differentiation of memory B cells into plasma cells. Blood. 2005. May 15; 10.1182/blood-2004-08-2992 PubMed DOI
Kurachi M, Kurachi J, Suenaga F, Tsukui T, Abe J, Ueha S, et al. Chemokine receptor CXCR3 facilitates CD8(+) T cell differentiation into short-lived effector cells leading to memory degeneration. J Exp Med. 2011. August 1; 10.1084/jem.20102101 PubMed DOI PMC
Phares TW, Stohlman SA, Hinton DR, Bergmann CC. Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis. J Virol. 2013. March; 10.1128/JVI.03307-12 PubMed DOI PMC
Michlmayr D, McKimmie CS. Role of CXCL10 in central nervous system inflammation. International Journal of Interferon, Cytokine and Mediator Research 2014; 10.2147/IJICMR.S35953 DOI
Semple BD, Kossmann T, Morganti-Kossmann MC. Role of chemokines in CNS health and pathology: a focus on the CCL2/CCR2 and CXCL8/CXCR2 networks. J Cereb Blood Flow Metab. 2010. March; 10.1038/jcbfm.2009.240 PubMed DOI PMC
Irani DN. Regulated Production of CXCL13 within the Central Nervous System. J Clin Cell Immunol. 2016. October; 10.4172/2155-9899.1000460 PubMed DOI PMC
Kothur K, Wienholt L, Brilot F, Dale RC. CSF cytokines/chemokines as biomarkers in neuroinflammatory CNS disorders: A systematic review. Cytokine. 2016. January; 10.1016/j.cyto.2015.10.001 PubMed DOI
Kowarik MC, Cepok S, Sellner J, Grummel V, Weber MS, Korn T, et al. CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. J Neuroinflammation. 2012. May 16; 10.1186/1742-2094-9-93 PubMed DOI PMC
Rupprecht TA, Plate A, Adam M, Wick M, Kastenbauer S, Schmidt C, et al. The chemokine CXCL13 is a key regulator of B cell recruitment to the cerebrospinal fluid in acute Lyme neuroborreliosis. J Neuroinflammation. 2009. December 30; 10.1186/1742-2094-6-42 PubMed DOI PMC
Pranzatelli MR, Tate ED, McGee NR, Travelstead AL, Ransohoff RM, Ness JM, et al. Key role of CXCL13/CXCR5 axis for cerebrospinal fluid B cell recruitment in pediatric OMS. J Neuroimmunol. 2012. February 29; 10.1016/j.jneuroim.2011.12.014 PubMed DOI
Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisäkk P, Ransohoff RM, et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain. 2006. January; 10.1093/brain/awh680 PubMed DOI
Iwanowski P, Losy J, Kramer L, Wójcicka M, Kaufman E. CXCL10 and CXCL13 chemokines in patients with relapsing remitting and primary progressive multiple sclerosis. J Neurol Sci. 2017. September 15; 10.1016/j.jns.2017.06.048 PubMed DOI
Vazirinejad R, Ahmadi Z, Kazemi AM, Hassanshahi G, Kennedy D. The biological functions, structure and sources of CXCL10 and its outstanding part in the pathophysiology of multiple sclerosis. Neuroimmunomodulation. 2014; 10.1159/000357780 PubMed DOI
Pranzatelli MR, Tate ED, McGee NR, Travelstead AL, Verhulst SJ, Ransohoff RM. Expression of CXCR3 and its ligands CXCL9, -10 and -11 in paediatric opsoclonus-myoclonus syndrome. Clin Exp Immunol. 2013. June; 10.1111/cei.12065 PubMed DOI PMC
Klein RS. Regulation of neuroinflammation: the role of CXCL10 in lymphocyte infiltration during autoimmune encephalomyelitis. J Cell Biochem. 2004. May 15; 10.1002/jcb.20052 PubMed DOI
Michlmayr D, Lim JK. Chemokine receptors as important regulators of pathogenesis during arboviral encephalitis. Front Cell Neurosci. 2014. September 30; 10.3389/fncel.2014.00264 PubMed DOI PMC
Liba Z, Kayserova J, Elisak M, Marusic P, Nohejlova H, Hanzalova J, et al. Anti-N-methyl-D-aspartate receptor encephalitis: the clinical course in light of the chemokine and cytokine levels in cerebrospinal fluid. J Neuroinflammation. 2016. March 3; 10.1186/s12974-016-0507-9 PubMed DOI PMC
Kothur K, Wienholt L, Mohammad SS, Tantsis EM, Pillai S, Britton PN, et al. Utility of CSF Cytokine/Chemokines as Markers of Active Intrathecal Inflammation: Comparison of Demyelinating, Anti-NMDAR and Enteroviral Encephalitis. PLoS One. 2016. August 30; 10.1371/journal.pone.0161656 PubMed DOI PMC
Casserly CS, Nantes JC, Whittaker Hawkins RF, Vallières L. Neutrophil perversion in demyelinating autoimmune diseases: Mechanisms to medicine. Autoimmun Rev. 2017. March; 10.1016/j.autrev.2017.01.013 PubMed DOI
Pinto Junior VL, Rebelo MC, Gomes RN, Assis EF, Castro-Faria-Neto HC, Bóia MN. IL-6 and IL-8 in cerebrospinal fluid from patients with aseptic meningitis and bacterial meningitis: their potential role as a marker for differential diagnosis. Braz J Infect Dis. 2011. Mar-Apr;15(2):156–8. PubMed
Coutinho LG, Grandgirard D, Leib SL, Agnez-Lima LF. Cerebrospinal-fluid cytokine and chemokine profile in patients with pneumococcal and meningococcal meningitis. BMC Infect Dis. 2013. July 17; 10.1186/1471-2334-13-326 PubMed DOI PMC
Scarpini E, Galimberti D, Baron P, Clerici R, Ronzoni M, Conti G, et al. IP-10 and MCP-1 levels in CSF and serum from multiple sclerosis patients with different clinical subtypes of the disease. J Neurol Sci. 2002. March 15;195(1):41–6. PubMed
Sørensen TL, Ransohoff RM, Strieter RM, Sellebjerg F. Chemokine CCL2 and chemokine receptor CCR2 in early active multiple sclerosis. Eur J Neurol. 2004. July; 10.1111/j.1468-1331.2004.00796.x PubMed DOI
Ishizu T, Minohara M, Ichiyama T, Kira R, Tanaka M, Osoegawa M, et al. CSF cytokine and chemokine profiles in acute disseminated encephalomyelitis. J Neuroimmunol. 2006. June; 10.1016/j.jneuroim.2006.03.020 PubMed DOI
Khaibullin T, Ivanova V, Martynova E, Cherepnev G, Khabirov F, Granatov E, et al. Elevated Levels of Proinflammatory Cytokines in Cerebrospinal Fluid of Multiple Sclerosis Patients. Front Immunol. 2017. May 18; 10.3389/fimmu.2017.00531 PubMed DOI PMC
Bielekova B, Komori M, Xu Q, Reich DS, Wu T. Cerebrospinal fluid IL-12p40, CXCL13 and IL-8 as a combinatorial biomarker of active intrathecal inflammation. PLoS One. 2012; 10.1371/journal.pone.0048370 PubMed DOI PMC
Wullschleger A, Kapina V, Molnarfi N, Courvoisier DS, Seebach JD, Santiago-Raber ML, et al. Cerebrospinal fluid interleukin-6 in central nervous system inflammatory diseases. PLoS One. 2013. August 27; 10.1371/journal.pone.0072399 PubMed DOI PMC
Deisenhammer F, Bartos A, Egg R, Gilhus NE, Giovannoni G, Rauer S, Sellebjerg F; EFNS Task Force. Guidelines on routine cerebrospinal fluid analysis. Report from an EFNS task force. Eur J Neurol. 2006. September; 10.1111/j.1468-1331.2006.01493.x PubMed DOI
Hintzen R, Kornberg A, Pohl D, Rostasy K, Tenembaum S, Wassmer E; International Pediatric Multiple Sclerosis Study Group. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Mult Scler. 2013. September; 10.1177/1352458513484547 PubMed DOI
Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008. December; 10.1016/S1474-4422(08)70224-2. PubMed DOI PMC
Bien CG, Schramm J. Treatment of Rasmussen encephalitis half a century after its initial description: promising prospects and a dilemma. Epilepsy Res. 2009. October; 10.1016/j.eplepsyres.2009.06.001 PubMed DOI
Venkatesan A, Tunkel AR, Bloch KC, Lauring AS, Sejvar J, Bitnun A, et al. International Encephalitis Consortium. Case definitions, diagnostic algorithms, and priorities in encephalitis: consensus statement of the international encephalitis consortium. Clin Infect Dis. 2013. October; 10.1093/cid/cit458 PubMed DOI PMC
Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al. International Panel for NMO Diagnosis. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015. July 14; 10.1212/WNL.0000000000001729 PubMed DOI PMC
Mygland A, Ljøstad U, Fingerle V, Rupprecht T, Schmutzhard E, Steiner I; European Federation of Neurological Societies. EFNS guidelines on the diagnosis and management of European Lyme neuroborreliosis. Eur J Neurol. 2010. January; 10.1111/j.1468-1331.2009.02862.x PubMed DOI
R Development Core Team, R: A Language and Environment for Statistical Computing. Vienna, Austria: the R Foundation for Statistical Computing; http://www.R-project.org/.
Becher B, Spath S, Goverman J. Cytokine networks in neuroinflammation. Nat Rev Immunol. 2017. January; 10.1038/nri.2016.123 PubMed DOI
Pranzatelli MR. Advances in Biomarker-Guided Therapy for Pediatric- and Adult-Onset Neuroinflammatory Disorders: Targeting Chemokines/Cytokines. Front Immunol. 2018. April 4; 10.3389/fimmu.2018.00557 PubMed DOI PMC
Alvarez E, Piccio L, Mikesell RJ, Klawiter EC, Parks BJ, Naismith RT, et al. CXCL13 is a biomarker of inflammation in multiple sclerosis, neuromyelitis optica, and other neurological conditions. Mult Scler. 2013. August; 10.1177/1352458512473362 PubMed DOI PMC
Wang C, Wu K, Yu Q, Zhang S, Gao Z, Liu Y, et al. CXCL13, CXCL10 and CXCL8 as Potential Biomarkers for the Diagnosis of Neurosyphilis Patients. Sci Rep. 2016. September 21; 10.1038/srep33569 PubMed DOI PMC
Remy MM, Schöbi N, Kottanattu L, Pfister S, Duppenthaler A, Suter-Riniker F. Cerebrospinal fluid CXCL13 as a diagnostic marker of neuroborreliosis in children: a retrospective case-control study. J Neuroinflammation. 2017. August 31; 10.1186/s12974-017-0948-9 PubMed DOI PMC
Alvarez E, Piccio L, Mikesell RJ, Trinkaus K, Parks BJ, Naismith RT, et al. Predicting optimal response to B-cell depletion with rituximab in multiple sclerosis using CXCL13 index, magnetic resonance imaging and clinical measures. Mult Scler J Exp Transl Clin. 2015. December 24; 10.1177/2055217315623800 PubMed DOI PMC
Teunissen C, Menge T, Altintas A, Álvarez-Cermeño JC, Bertolotto A, Berven FS, et al. Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis. Mult Scler. 2013. November; 10.1177/1352458513488232 PubMed DOI
Pranzatelli MR, Tate ED, McGee NR, Colliver JA. Pediatric reference ranges for proinflammatory and anti-inflammatory cytokines in cerebrospinal fluid and serum by multiplexed immunoassay. J Interferon Cytokine Res. 2013. September; 10.1089/jir.2012.0132 PubMed DOI PMC
Brettschneider J, Czerwoniak A, Senel M, Fang L, Kassubek J, Pinkhardt E, et al. The chemokine CXCL13 is a prognostic marker in clinically isolated syndrome (CIS).PLoS One. 2010. August 5; 10.1371/journal.pone.0011986 PubMed DOI PMC
Bielekova B, Pranzatelli MR. Promise, Progress, and Pitfalls in the Search for Central Nervous System Biomarkers in Neuroimmunological Diseases: A Role for Cerebrospinal Fluid Immunophenotyping. Semin Pediatr Neurol. 2017. August; 10.1016/j.spen.2017.08.001 PubMed DOI PMC
Hajian-Tilaki K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Caspian J Intern Med. 2013. Spring;4(2):627–35. PubMed PMC
Rupprecht TA, Pfister HW, Angele B, Kastenbauer S, Wilske B, Koedel U. The chemokine CXCL13 (BLC): a putative diagnostic marker for neuroborreliosis. Neurology. 2005. August 9; 10.1212/01.wnl.0000171349.06645.79 PubMed DOI
Burgel ND, Bakels F, Kroes AC, Dam AP. Discriminating Lyme neuroborreliosis from other neuroinflammatory diseases by levels of CXCL13 in cerebrospinal fluid. J Clin Microbiol. 2011. May; 10.1128/JCM.00084-11 PubMed DOI PMC
Ferraro D, Galli V, Vitetta F, Simone AM, Bedin R, Del Giovane C, et al. Cerebrospinal fluid CXCL13 in clinically isolated syndrome patients: Association with oligoclonal IgM bands and prediction of Multiple Sclerosis diagnosis. J Neuroimmunol. 2015. June 15; 10.1016/j.jneuroim.2015.04.011 PubMed DOI
Zajkowska J, Moniuszko-Malinowska A, Pancewicz SA, Muszyńska-Mazur A, Kondrusik M, Grygorczuk S, et al. Evaluation of CXCL10, CXCL11, CXCL12 and CXCL13 chemokines in serum and cerebrospinal fluid in patients with tick borne encephalitis (TBE). Adv Med Sci. 2011; 10.2478/v10039-011-0033-z PubMed DOI