Anti-N-methyl-D-aspartate receptor encephalitis: the clinical course in light of the chemokine and cytokine levels in cerebrospinal fluid
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
PubMed
26941012
PubMed Central
PMC4776396
DOI
10.1186/s12974-016-0507-9
PII: 10.1186/s12974-016-0507-9
Knihovny.cz E-zdroje
- MeSH
- B-lymfocyty metabolismus MeSH
- chemokin CXCL10 mozkomíšní mok MeSH
- chemokin CXCL13 mozkomíšní mok MeSH
- chemokiny mozkomíšní mok MeSH
- cytokiny mozkomíšní mok MeSH
- dítě MeSH
- dospělí MeSH
- encefalitida s protilátkami proti NMDA receptorům mozkomíšní mok terapie MeSH
- faktor aktivující B-buňky mozkomíšní mok MeSH
- imunoterapie MeSH
- kóma mozkomíšní mok etiologie MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- progrese nemoci MeSH
- steroidy terapeutické užití MeSH
- T-lymfocyty metabolismus MeSH
- výměna plazmy MeSH
- výsledek terapie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chemokin CXCL10 MeSH
- chemokin CXCL13 MeSH
- chemokiny MeSH
- CXCL10 protein, human MeSH Prohlížeč
- CXCL13 protein, human MeSH Prohlížeč
- cytokiny MeSH
- faktor aktivující B-buňky MeSH
- steroidy MeSH
BACKGROUND: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune disorder of the central nervous system (CNS). Its immunopathogenesis has been proposed to include early cerebrospinal fluid (CSF) lymphocytosis, subsequent CNS disease restriction and B cell mechanism predominance. There are limited data regarding T cell involvement in the disease. To contribute to the current knowledge, we investigated the complex system of chemokines and cytokines related to B and T cell functions in CSF and sera samples from anti-NMDAR encephalitis patients at different time-points of the disease. One patient in our study group had a long-persisting coma and underwent extraordinary immunosuppressive therapy. METHODS: Twenty-seven paired CSF/serum samples were collected from nine patients during the follow-up period (median 12 months, range 1-26 months). The patient samples were stratified into three periods after the onset of the first disease symptom and compared with the controls. Modified Rankin score (mRS) defined the clinical status. The concentrations of the chemokines (C-X-C motif ligand (CXCL)10, CXCL8 and C-C motif ligand 2 (CCL2)) and the cytokines (interferon (IFN)γ, interleukin (IL)4, IL7, IL15, IL17A and tumour necrosis factor (TNF)α) were measured with Luminex multiple bead technology. The B cell-activating factor (BAFF) and CXCL13 concentrations were determined via enzyme-linked immunosorbent assay. We correlated the disease period with the mRS, pleocytosis and the levels of all of the investigated chemokines and cytokines. Non-parametric tests were used, a P value <0.05 was considered to be significant. RESULTS: The increased CXCL10 and CXCL13 CSF levels accompanied early-stage disease progression and pleocytosis. The CSF CXCL10 and CXCL13 levels were the highest in the most complicated patient. The CSF BAFF levels remained unchanged through the periods. In contrast, the CSF levels of T cell-related cytokines (INFγ, TNFα and IL17A) and IL15 were slightly increased at all of the periods examined. No dynamic changes in chemokine and cytokine levels were observed in the peripheral blood. CONCLUSIONS: Our data support the hypothesis that anti-NMDAR encephalitis is restricted to the CNS and that chemoattraction of immune cells dominates at its early stage. Furthermore, our findings raise the question of whether T cells are involved in this disease.
Zobrazit více v PubMed
Titulaer MJ, McCracken L, Gabilondo I, Armangué T, Glaser C, Iizuka T, et al. Treatment and prognostic factors for long-term outcome in patients with anti NMDA receptor encephalitis: an observational cohort study. Lancet Neurol. 2013;12:157–65. doi: 10.1016/S1474-4422(12)70310-1. PubMed DOI PMC
Florance-Ryan N, Dalmau J. Update on anti-N-methyl-D-aspartate receptor encephalitis in children and adolescence. Curr Opin Pediatr. 2010;22(6):739–44. doi: 10.1097/MOP.0b013e3283402d2f. PubMed DOI
Dalmau J, Tüzün E, Wu HY, Masjuan J, Rossi JE, Voloschin A, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol. 2007;61(1):25–36. doi: 10.1002/ana.21050. PubMed DOI PMC
Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effect of antibodies. Lancet Neurol. 2008;7(12):1091–8. doi: 10.1016/S1474-4422(08)70224-2. PubMed DOI PMC
Tüzün E, Zhou L, Baehring JM, Bannykh S, Rosenfeld MR, Dalmau J. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma. Acta Neuropathol. 2009;118:737–43. doi: 10.1007/s00401-009-0582-4. PubMed DOI PMC
Irani SR, Bera K, Waters P, Zuliani L, Maxwell S, Zandi MS, et al. N-methyl-D-aspartate antibody encephalitis: temporal progression of clinical and paraclinicalobservations in a predominantly non-paraneoplastic disorder of both sexes. Brain. 2010;133:1655–67. doi: 10.1093/brain/awq113. PubMed DOI PMC
Muranski P, Restifo NP. Essentials of Th17 cell commitment and plasticity. Blood. 2013;121:2402–14. doi: 10.1182/blood-2012-09-378653. PubMed DOI PMC
Damsker JM, Hansen AM, Caspi RR. Th1 and Th17 cells: adversariers and collabolators. Ann N Y Acad Sci. 2010;1183:211–21. doi: 10.1111/j.1749-6632.2009.05133.x. PubMed DOI PMC
Carrette F, Surh CD. IL-7 signaling and CD127 receptor regulation in the control of T cell homeostasis. Semin Immunol. 2012;24(3):209–17. doi: 10.1016/j.smim.2012.04.010. PubMed DOI PMC
Liba Z, Sebronova V, Komarek V, Sediva A, Sedlacek P. Prevalence and treatment of anti-NMDA receptor encephalitis. Lancet Neurol. 2013;12(5):424–5. doi: 10.1016/S1474-4422(13)70070-X. PubMed DOI
Leypoldt F, Höftberger R, Titulaer MJ, Armangue T, Gresa-Arribas N, Jahn H, et al. Investigations on CXCL13 in anti-N-methyl-D-aspartate receptor encephalitis: a potential biomarker of treatment response. JAMA Neurol. 2015;72:180–6. doi: 10.1001/jamaneurol.2014.2956. PubMed DOI PMC
Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-MNDAR encephalitis. Lancet Neurol. 2011;10(1):63–74. doi: 10.1016/S1474-4422(10)70253-2. PubMed DOI PMC
Hachiya Y, Uruha A, Kasai-Yoshida E, Shimoda K, Sato-Shirai I, Kumada S, et al. Rituximab ameliorates anti-N-methyl-D-aspartate receptor encephalitis by removal of short-live plasmablast. J Neuroimmunol. 2013;265(1-2):128–30. doi: 10.1016/j.jneuroim.2013.09.017. PubMed DOI
Graaf MT, Jongste AHC, Kraan J, Boonstra JG, Sillevis Smitt PA, Gratama JW. Flow cytometric characterization of cerebrospinal fluid cell. Cytometry B Clin Cytom. 2011;80(5):271–81. doi: 10.1002/cyto.b.20603. PubMed DOI
Krumbholz M, Theil D, Cepok S, Hemmer B, Kivisäkk P, Ransohoff RM, et al. Chemokines inmultiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain. 2006;129:200–11. doi: 10.1093/brain/awh680. PubMed DOI
Kowarik MC, Cepok S, Sellner J, Grummel V, Weber MS, Korn T, et al. CXCL13 is the major determinant for B cell recruitment to the CSF during neuroinflammation. J Neuroinflammation. 2012;9:93. doi: 10.1186/1742-2094-9-93. PubMed DOI PMC
Esen N, Rainey-Barger EK, Huber AK, Blakely PK, Irani DN. Type-I interferons suppress microglial production of the lymphoid chemokine, CXCL13. Glia. 2014;62(9):1452–62. doi: 10.1002/glia.22692. PubMed DOI PMC
Groom JR, Luster AD. CXCR3 in T cell function. Exp Cell Res. 2011;317(5):620–31. doi: 10.1016/j.yexcr.2010.12.017. PubMed DOI PMC
Pranzatelli MR, Tate ED, McGee NR, Travelstead AL, Verhulst SJ, Ransohoff RM. Expression of CXCR3 and its ligands CXCL9,-10 and -11 in paediatric opsoclonus-myoclonus syndrome. Clin Exp Immunol. 2013;172:427–36. doi: 10.1111/cei.12065. PubMed DOI PMC
Muehlinghaus G, Cigliano L, Huehn S, Peddinghaus A, Leyendeckers H, Hauser AE, et al. Regulation of CXCR3 and CXCR4 expression during terminal differentiation of memory B cells into plasma cells. Blood. 2005;105:3965–71. doi: 10.1182/blood-2004-08-2992. PubMed DOI
Phares TW, Stohlman SA, Hinton DR, Bergmann CC. Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis. J Virol. 2013;87:3382–92. doi: 10.1128/JVI.03307-12. PubMed DOI PMC
Peery HE, Day GS, Dunn S, Fritzler MJ, Pruss H, De Souza C, et al. Anti-NMDA receptor encephalitis. The disorder, the diagnosis and the immunobiology. Autoimmune Rev. 2012;11(12):863–72. doi: 10.1016/j.autrev.2012.03.001. PubMed DOI
Krumbholz M, Derfuss T, Hohlfeld R, Meinl E. B cells and antibodies in multiple sclerosis pathogenesis and therapy. Nat Rev Neurol. 2012;8(11):613–23. doi: 10.1038/nrneurol.2012.203. PubMed DOI
Pranzatelli MR, Tate ED, McGee NR, Travelstead AL, Colliver JA, Ness JM. BAFF/APRIL system in pediatric OMS: relation to severity, neuroinflammation, and immunotherapy. J Neuroinflammation. 2013;10:10. doi: 10.1186/1742-2094-10-10. PubMed DOI PMC
Patakas A, Benson RA, Withers DR, Conigliaro P, McInnes IB, Brewer JM, et al. Th17 effector cells support B cell responses outside of germinal centres. PLoS One. 2012;7 doi: 10.1371/journal.pone.0049715. PubMed DOI PMC
Uzawa A, Mori M, Kuwabara S. Cytokines and chemokines in neuromyelitis optica: pathogenic and therapeutic implications. Brain Pathol. 2014;24(1):67–73. doi: 10.1111/bpa.12097. PubMed DOI PMC