Zinc Biofortification in Food Crops Could Alleviate the Zinc Malnutrition in Human Health

. 2021 Jun 09 ; 26 (12) : . [epub] 20210609

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34207649

Grantová podpora
S-grant This study was supported by an S-grant from the Ministry of Education, Youth and Sports of the Czech Republic

Micronutrient malnutrition is a global health issue and needs immediate attention. Over two billion people across the globe suffer from micronutrient malnutrition. The widespread zinc (Zn) deficiency in soils, poor zinc intake by humans in their diet, low bioavailability, and health consequences has led the research community to think of an economic as well as sustainable strategy for the alleviation of zinc deficiency. Strategies like fortification and diet supplements, though effective, are not economical and most people in low-income countries cannot afford them, and they are the most vulnerable to Zn deficiency. In this regard, the biofortification of staple food crops with Zn has been considered a useful strategy. An agronomic biofortification approach that uses crop fertilization with Zn-based fertilizers at the appropriate time to ensure grain Zn enrichment has been found to be cost-effective, easy to practice, and efficient. Genetic biofortification, though time-consuming, is also highly effective. Moreover, a Zn-rich genotype once developed can also be used for many years without any recurring cost. Hence, both agronomic and genetic biofortification can be a very useful tool in alleviating Zn deficiency.

Zobrazit více v PubMed

Gundersen C., Ziliak J.P. Food Insecurity and Health Outcomes. Health Aff. 2015;34:1830–1839. doi: 10.1377/hlthaff.2015.0645. PubMed DOI

Onyango A.W. Dietary diversity, child nutrition and health in contemporary African communities. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003;136:61–69. doi: 10.1016/S1095-6433(03)00071-0. PubMed DOI

FAO. IFAD. UNICEF. WFP. WHO . The State of Food Security and Nutrition in the World 2020: Transforming Food Systems for Affordable Healthy Diets. FAO; Rome, Italy: 2020.

Cakmak I., Pfeiffer W.H., McClafferty B. REVIEW: Biofortification of Durum Wheat with Zinc and Iron. Cereal Chem. J. 2010;87:10–20. doi: 10.1094/CCHEM-87-1-0010. DOI

Cakmak I., Graham R., Welch R.M. Agricultural and molecular genetic approaches to improving nutrition and preventing micronutrient malnutrition globally. Encycl. Life Support Syst. 2002;1:1075–1099.

Velu G., Ortiz-Monasterio I., Cakmak I., Hao Y., Singh R. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci. 2014;59:365–372. doi: 10.1016/j.jcs.2013.09.001. DOI

Zaman Q.U., Aslam Z., Yaseen M., Ihsan M.Z., Khaliq A., Fahad S., Bashir S., Ramzani P.M.A., Naeem M. Zinc bioforti-fication in rice: Leveraging agriculture to moderate hidden hunger in developing countries. Arch. Agron. Soil Sci. 2018;64:147–161. doi: 10.1080/03650340.2017.1338343. DOI

Ruel M.T., Alderman H., Maternal and Child Nutrition Study Group Nutrition-sensitive interventions and programmes: How can they help to accelerate progress in improving maternal and child nutrition? Lancet. 2013;382:536–551. doi: 10.1016/S0140-6736(13)60843-0. PubMed DOI

De Valença A., Bake A., Brouwer I., Giller K. Agronomic biofortification of crops to fight hidden hunger in sub-Saharan Africa. Glob. Food Secur. 2017;12:8–14. doi: 10.1016/j.gfs.2016.12.001. DOI

Aciksoz S.B., Yazici A., Ozturk L., Cakmak I. Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant Soil. 2011;349:215–225. doi: 10.1007/s11104-011-0863-2. DOI

Cakmak I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil. 2008;302:1–17. doi: 10.1007/s11104-007-9466-3. DOI

Das S., Chaki A.K., Hossain A. Breeding and agronomic approaches for the biofortification of zinc in wheat (Triticum aestivum L.) to combat zinc deficiency in millions of a population: A Bangladesh perspective. Acta Agrobot. 2019;72 doi: 10.5586/aa.1770. DOI

Maqbool M.A., Beshir A. Zinc biofortification of maize (Zea mays L.): Status and challenges. Plant Breed. 2019;138:1–28. doi: 10.1111/pbr.12658. DOI

Bouis H.E., Welch R.M. Biofortification-A Sustainable Agricultural Strategy for Reducing Micronutrient Malnutrition in the Global South. Crop Sci. 2010;50:S-20–S-32. doi: 10.2135/cropsci2009.09.0531. DOI

Cakmak I., Kutman U.B. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018;69:172–180. doi: 10.1111/ejss.12437. DOI

Welch R.M., Graham R.D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 2004;55:353–364. doi: 10.1093/jxb/erh064. PubMed DOI

Yaseen M.K., Hussain S. Zinc-biofortified wheat required only a medium rate of soil zinc application to attain the targets of zinc biofortification. Arch. Agron. Soil Sci. 2021;67:551–562. doi: 10.1080/03650340.2020.1739659. DOI

Prasad R., Shivay Y.S., Kumar D. Agronomic Biofortification of Cereal Grains with Iron and Zinc. Adv. Agron. 2014;125:55–91. doi: 10.1016/b978-0-12-800137-0.00002-9. DOI

Wessells K.R., Brown K.H. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE. 2012;7:e50568. doi: 10.1371/journal.pone.0050568. PubMed DOI PMC

Gibson R.S. Zinc deficiency and human health: Etiology, health consequences, and future solutions. Plant Soil. 2012;361:291–299. doi: 10.1007/s11104-012-1209-4. DOI

Hotz C., Brown K.H. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004;25:S91–S204. PubMed

Prasad R. Crop Nutrition—Principles and Practices. New Vishal Publications; Delhi, India: 2007. p. 272.

Roohani N., Hurrell R., Kelishadi R., Schulin R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013;18:144–157. PubMed PMC

Tapiero H., Tew K.D. Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomed. Pharmacother. 2003;57:399–411. doi: 10.1016/S0753-3322(03)00081-7. PubMed DOI

Zastrow M.L., Pecoraro V.L. Designing Hydrolytic Zinc Metalloenzymes. Biochemistry. 2014;53:957–978. doi: 10.1021/bi4016617. PubMed DOI PMC

Maret W. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life. Adv. Nutr. 2013;4:82–91. doi: 10.3945/an.112.003038. PubMed DOI PMC

Hambidge K.M. Zinc deficiency in young children. Am. J. Clin. Nutr. 1997;65:160–161. doi: 10.1093/ajcn/65.1.160. PubMed DOI

Veenemans J., Milligan P., Prentice A.M., Schouten L.R., Inja N., Van Der Heijden A.C., De Boer L.C., Jansen E.J., Koopmans A.E., Enthoven W.T., et al. Effect of supplementation with zinc and other micronutrients on malaria in Tanzanian children: A randomised trial. PLoS Med. 2011;8:e1001125. doi: 10.1371/journal.pmed.1001125. PubMed DOI PMC

Bhutta Z., Black R., Brown K., Gardner J., Gore S., Hidayat A., Khatun F., Martorell R., Ninh N., Penny M., et al. Prevention of diarrhea and pneumonia by zinc supplementation in children in developing countries: Pooled analysis of randomized controlled trials. J. Pediatr. 1999;135:689–697. doi: 10.1016/S0022-3476(99)70086-7. PubMed DOI

Moretti D., Biebinger R., Bruins M.J., Hoeft B., Kraemer K. Bioavailability of iron, zinc, folic acid, and vitamin A from fortified maize. Ann. N. Y. Acad. Sci. 2013;1312:54–65. doi: 10.1111/nyas.12297. PubMed DOI

Udechukwu M.C., Collins S.A., Udenigwe C.C. Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food Funct. 2016;7:4137–4144. doi: 10.1039/C6FO00706F. PubMed DOI

Saha S., Chakraborty M., Padhan D., Saha B., Murmu S., Batabyal K., Seth A., Hazra G.C., Mandal B., Bell R.W. Agro-nomic biofortification of zinc in rice: Influence of cultivars and zinc application methods on grain yield and zinc bioavailability. Field Crops Res. 2017;210:52–60. doi: 10.1016/j.fcr.2017.05.023. DOI

Sharma A., Patni B., Shankhdhar D., Shankhdhar S.C. Zinc—An indispensable micronutrient. Physiol. Mol. Biol. Plants. 2013;19:11–20. doi: 10.1007/s12298-012-0139-1. PubMed DOI PMC

White P.J., Broadley M. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005;10:586–593. doi: 10.1016/j.tplants.2005.10.001. PubMed DOI

Chasapis C., Loutsidou A.C., Spiliopoulou C.A., Stefanidou M.E. Zinc and human health: An update. Arch. Toxicol. 2012;86:521–534. doi: 10.1007/s00204-011-0775-1. PubMed DOI

Shokrzadeh M., Ghaemian A., Salehifar E., Aliakbari S., Saravi S.S.S., Ebrahimi P. Serum Zinc and Copper Levels in Ischemic Cardiomyopathy. Biol. Trace Elem. Res. 2008;127:116–123. doi: 10.1007/s12011-008-8237-1. PubMed DOI

Ogawa Y., Kinoshita M., Shimada S., Kawamura T. Zinc and Skin Disorders. Nutrients. 2018;10:199. doi: 10.3390/nu10020199. PubMed DOI PMC

Lansdown A.B.G., Mirastschijski U., Stubbs N., Scanlon E., Ågren M.S. Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair Regen. 2007;15:2–16. doi: 10.1111/j.1524-475X.2006.00179.x. PubMed DOI

Schwartz J.R., Marsh R.G., Draelos Z.D. Zinc and Skin Health: Overview of Physiology and Pharmacology. Dermatol. Surg. 2006;31:837–847. doi: 10.1111/j.1524-4725.2005.31729. PubMed DOI

Rostan E.F., DeBuys H.V., Madey D.L., Pinnell S.R. Evidence supporting zinc as an important antioxidant for skin. Int. J. Dermatol. 2002;41:606–611. doi: 10.1046/j.1365-4362.2002.01567.x. PubMed DOI

Favier A.E. The role of zinc in reproduction. Hormonal mechanism. Biol. Trace Elem. Res. 1992;32:363–382. doi: 10.1007/BF02784623. PubMed DOI

Kumar N., Singh A.K. Role of Zinc in Male Infertility: Review of Literature. Indian J. Obstet. Gynecol. Res. 2016;3:167. doi: 10.5958/2394-2754.2016.00028.X. DOI

Baltaci A.K., Mogulkoc R., Baltaci S.B. Review: The role of zinc in the endocrine system. Pak. J. Pharm. Sci. 2019;32:231–239. PubMed

Frederickson C.J., Suh S.W., Silva D., Frederickson C.J., Thompson R.B. Importance of zinc in the central nervous system: The zinc-containing neuron. J. Nutr. 2000;130:1471S–1483S. doi: 10.1093/jn/130.5.1471S. PubMed DOI

Gower-Winter S.D., Levenson C.W. Zinc in the central nervous system: From molecules to behavior. BioFactors. 2012;38:186–193. doi: 10.1002/biof.1012. PubMed DOI PMC

Brown K.H., Rivera J.A., Bhutta Z., Gibson R.S., King J.C., Lönnerdal B., Ruel M.T., Sandtröm B., Wasantwisut E., Hotz C. International Zinc Nutrition Consultative Group (IZiNCG) technical document #1. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004;25(Suppl. 2):S99–S203. PubMed

Barnett J.B., Hamer D.H., Meydani S.N. Low zinc status: A new risk factor for pneumonia in the elderly? Nutr. Rev. 2010;68:30–37. doi: 10.1111/j.1753-4887.2009.00253.x. PubMed DOI PMC

Brown P.H., Cakmak I., Zhang Q. Zinc in Soils and Plants. Springer; Dordrecht, The Netherlands: 1993. Form and Function of Zinc Plants; pp. 93–106.

Tobin A.J. Carbonic Anhydrase from Parsley Leaves. J. Biol. Chem. 1970;245:2656–2666. doi: 10.1016/S0021-9258(18)63120-5. PubMed DOI

Du H.Y., Liu D.X., Liu G.T., Liu H.P., Kurtenbach R. Relationship between Polyamines and Anaerobic Respiration of Wheat Seedling Root under Water-Logging Stress. Russ. J. Plant Physiol. 2018;65:874–881. doi: 10.1134/S1021443718060055. DOI

Miro B., Ismail A.M. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.) Front. Plant Sci. 2013;4:269. doi: 10.3389/fpls.2013.00269. PubMed DOI PMC

Alscher R.G., Erturk N., Heath L.S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 2002;53:1331–1341. doi: 10.1093/jexbot/53.372.1331. PubMed DOI

Wang Y., Branicky R., Noë A., Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018;217:1915–1928. doi: 10.1083/jcb.201708007. PubMed DOI PMC

Lu Y., Hall D.A., Last R.L. A small zinc finger thylakoid protein plays a role in maintenance of photosystem II in Arabidopsis thaliana. Plant Cell. 2011;23:1861–1875. doi: 10.1105/tpc.111.085456. PubMed DOI PMC

Disante K.B., Fuentes D., Cortina J. Response to drought of Zn-stressed Quercus suber L. seedlings. Environ. Exp. Bot. 2011;70:96–103. doi: 10.1016/j.envexpbot.2010.08.008. DOI

Hafeez B., Khanif Y.M., Saleem M. Role of Zinc in Plant Nutrition—A Review. Am. J. Exp. Agric. 2013;3:374–391. doi: 10.9734/AJEA/2013/2746. DOI

Kasim W.A. Physiological consequences of structural and ultra-structural changes induced by Zn stress in Phaseolus vulgaris. I. Growth and Photosynthetic apparatus. Int. J. Bot. 2007;3:15–22. doi: 10.3923/ijb.2007.15.22. DOI

Peck A.W., McDonald G.K. Adequate zinc nutrition alleviates the adverse effects of heat stress in bread wheat. Plant Soil. 2010;337:355–374. doi: 10.1007/s11104-010-0532-x. DOI

Tavallali V., Rahemi M., Eshghi S., Kholdebarin B., Ramezanian A. Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. ‘Badami’) seedlings. Turk. J. Agric. Forest. 2010;34:349–359.

Jan A., Maruyama K., Todaka D., Kidokoro S., Abo M., Yoshimura E., Shinozaki K., Nakashima K., Yamaguchi-Shinozaki K. OsTZF1, a CCCH-Tandem Zinc Finger Protein, Confers Delayed Senescence and Stress Tolerance in Rice by Regulating Stress-Related Genes. Plant Physiol. 2013;161:1202–1216. doi: 10.1104/pp.112.205385. PubMed DOI PMC

Zhang H., Liu Y., Wen F., Yao D., Wang L., Guo J., Ni L., Zhang A., Tan M., Jiang M. A novel rice C2H2-type zinc finger protein, ZFP36, is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice. J. Exp. Bot. 2014;65:5795–5809. doi: 10.1093/jxb/eru313. PubMed DOI PMC

Guo Y., Yu Y., Wang D., Wu C., Yang G., Huang J., Zheng C. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5. New Phytol. 2009;183:62–75. doi: 10.1111/j.1469-8137.2009.02838.x. PubMed DOI

Li C., Lv J., Zhao X., Ai X., Zhu X., Wang M., Zhao S., Xia G. TaCHP: A Wheat Zinc Finger Protein Gene Down-Regulated by Abscisic Acid and Salinity Stress Plays a Positive Role in Stress Tolerance. Plant Physiol. 2010;154:211–221. doi: 10.1104/pp.110.161182. PubMed DOI PMC

Cabot C., Martos S., Llugany M., Gallego B., Tolrà R., Poschenrieder C. A Role for Zinc in Plant Defense against Pathogens and Herbivores. Front. Plant Sci. 2019;10:1171. doi: 10.3389/fpls.2019.01171. PubMed DOI PMC

Khoshgoftarmanesh A.H., Schulin R., Chaney R.L., Daneshbakhsh B., Afyuni M. Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture—A review. Agron. Sustain. Dev. 2010;30:83–107. doi: 10.1051/agro/2009017. DOI

McDonald G.K., Genc Y., Graham R.D. A simple method to evaluate genetic variation in grain zinc concentration by correcting for differences in grain yield. Plant Soil. 2008;306:49–55. doi: 10.1007/s11104-008-9555-y. DOI

Zou C.Q., Zhang Y.Q., Rashid A., Ram H., Savasli E., Arisoy R.Z., Ortiz-Monasterio I., Simunji S., Wang Z.H., Sohu V.S., et al. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant Soil. 2012;361:119–130. doi: 10.1007/s11104-012-1369-2. DOI

Yilmaz A., Ekiz H., Torun B., Gultekin I., Karanlik S., Bagci S.A., Cakmak I. Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc-deficient calcareous soils. J. Plant Nutr. 1997;20:461–471. doi: 10.1080/01904169709365267. DOI

Khan M.U., Qasim M., Subhan M., Jamil M., Ahmad R.D. Response of rice to different methods of zinc application in calcareous soil. Pak. J. Appl. Sci. 2003;3:524–529. doi: 10.3923/jas.2003.524.529. DOI

Mathpal B., Srivastava P.C., Shankhdhar D., Shankhdhar S.C. Zinc enrichment in wheat genotypes under various methods of zinc application. Plant Soil Environ. 2015;61:171–175. doi: 10.17221/41/2015-PSE. DOI

Hussain S., Maqsood M.A., Rengel Z., Aziz T. Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant Soil. 2012;361:279–290. doi: 10.1007/s11104-012-1217-4. DOI

Rehman A., Farooq M., Ahmad R., Basra S. Seed priming with zinc improves the germination and early seedling growth of wheat. Seed Sci. Technol. 2015;43:262–268. doi: 10.15258/sst.2015.43.2.15. DOI

Lindsay W.L., Mortvedt J.J. Inorganic Equilibria Affecting Micronutrients in Soils. Micronutr. Agric. 2018;4:89–112. doi: 10.2136/sssabookser4.2ed.c4. DOI

Alloway B.J. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health. 2009;31:537–548. doi: 10.1007/s10653-009-9255-4. PubMed DOI

Sparks D.L. Kinetics of Soil Chemical Phenomena: Future Directions. Future Prospect. Soil Chem. 2015;55:81–101. doi: 10.2136/sssaspecpub55.c4. DOI

Tye A., Young S., Crout N., Zhang H., Preston S., Barbosa-Jefferson V., Davison W., McGrath S., Paton G., Kilham K., et al. Predicting the activity of Cd2+ and Zn2+ in soil pore water from the radio-labile metal fraction. Geochim. Cosmochim. Acta. 2003;67:375–385. doi: 10.1016/S0016-7037(02)01138-9. DOI

Wilkinson H.F., Loneragan J.F., Quirk J.P. The Movement of Zinc to Plant Roots1. Soil Sci. Soc. Am. J. 1968;32:831–833. doi: 10.2136/sssaj1968.03615995003200060035x. DOI

Rengel Z. Availability of Mn, Zn and Fe in the rhizosphere. J. Soil Sci. Plant Nutr. 2015;15:397–409. doi: 10.4067/S0718-95162015005000036. DOI

Cakmak I., Yilmaz A., Ekiz H., Torun B., Erenoglu B., Braun H.J. Zinc deficiency as a critical nutritional problem in wheat production in Central Anatolia. Plant Soil. 1996;180:165–172. doi: 10.1007/BF00015299. DOI

Graham R.D., Ascher J.S., Hynes S.C. Selecting zinc-efficient cereal genotypes for soils of low zinc status. Plant Soil. 1992;146:241–250. doi: 10.1007/BF00012018. DOI

Erenoglu E.B., Kutman U.B., Ceylan Y., Yildiz B., Cakmak I. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc ( 65 Zn) in wheat. New Phytol. 2011;189:438–448. doi: 10.1111/j.1469-8137.2010.03488.x. PubMed DOI

Kutman U.B., Yildiz B., Ozturk L., Cakmak I. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem. 2010;87:1–9. doi: 10.1094/CCHEM-87-1-0001. DOI

Mousavi S.R. Zinc in crop production and interaction with phosphorus. Aust. J. Basic Appl. Sci. 2011;5:1503–1509.

Prasad R., Shivay Y.S., Kumar D. Interactions of zinc with other nutrients in soils and plants—A Review. Indian J. Fertil. 2016;12:16–26.

Gao X., Hoffland E., Stomph T., Grant C.A., Zou C., Zhang F. Improving zinc bioavailability in transition from flooded to aerobic rice. A review. Agron. Sustain. Dev. 2012;32:465–478. doi: 10.1007/s13593-011-0053-x. DOI

Aeron A., Kumar S., Pandey P., Maheshwari D.K. Bacteria in Agrobiology: Crop Ecosystems. Springer; Berlin/Heidelberg, Germany: 2011. Emerging role of plant growth promoting rhizobacteria in agrobiology; pp. 1–36.

Cakmakçi R., Dönmez F., Aydın A., Şahin F. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 2006;38:1482–1487. doi: 10.1016/j.soilbio.2005.09.019. DOI

Vejan P., Abdullah R., Khadiran T., Ismail S., Nasrulhaq Boyce A. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules. 2016;21:573. doi: 10.3390/molecules21050573. PubMed DOI PMC

Cavagnaro T.R. The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: A review. Plant Soil. 2008;304:315–325. doi: 10.1007/s11104-008-9559-7. DOI

Pearson J., Rengel Z. Distribution and remobilization of Zn and Mn during grain development in wheat. J. Exp. Bot. 1994;45:1829–1835. doi: 10.1093/jxb/45.12.1829. DOI

Ozturk L., Yazici M.A., Yucel C., Torun A., Cekic C., Bagci A., Ozkan H., Braun H.J., Sayers Z., Cakmak I. Concentration and localization of zinc during seed development and germination in wheat. Physiol. Plant. 2006;128:144–152. doi: 10.1111/j.1399-3054.2006.00737.x. DOI

Malesh A.A., Mengistu D.K., Aberra D.A. 2016. Linking agriculture with health through genetic and agronomic biofortification. Agric. Sci. 2016;7:295–307.

Haslett B.S., Reid R.J., Rengel Z. Zinc Mobility in Wheat: Uptake and Distribution of Zinc Applied to Leaves or Roots. Ann. Bot. 2001;87:379–386. doi: 10.1006/anbo.2000.1349. DOI

Karim R., Zhang Y.-Q., Zhao R.-R., Chen X.-P., Zhang F.-S., Zou C.-Q. Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J. Plant Nutr. Soil Sci. 2012;175:142–151. doi: 10.1002/jpln.201100141. DOI

Cakmak I. Tansley Review No. 111: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000;146:185–205. doi: 10.1046/j.1469-8137.2000.00630.x. PubMed DOI

Yilmaz A., Ekiz H., Gültekin I., Torun B., Barut H., Karanlik S., Cakmak I. Effect of seed zinc content on grain yield and zinc concentration of wheat grown in zinc-deficient calcareous soils. J. Plant Nutr. 1998;21:2257–2264. doi: 10.1080/01904169809365559. DOI

Harris D., Rashid A., Miraj G., Arif M., Yunas M. ‘On-farm’ seed priming with zinc in chickpea and wheat in Pakistan. Plant Soil. 2008;306:3–10. doi: 10.1007/s11104-007-9465-4. DOI

Cakmak I. Zinc Fertilizer Strategy for Improving Yield. Fluid J. 2012;20:4–7.

Gao X., Zou C., Fan X., Zhang F., Hoffland E. From Flooded to Aerobic Conditions in Rice Cultivation: Consequences for Zinc Uptake. Plant Soil. 2006;280:41–47. doi: 10.1007/s11104-004-7652-0. DOI

Kutman U.B., Yildiz B., Cakmak I. Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant Soil. 2011;342:149–164. doi: 10.1007/s11104-010-0679-5. DOI

Manzeke M.G., Mtambanengwe F., Watts M.J., Broadley M.R., Murray L.R., Mapfumo P. Nitrogen effect on zinc bio-fortification of maize and cowpea in Zimbabwean smallholder farms. Agron. J. 2020;112:2256–2274. doi: 10.1002/agj2.20175. DOI

Yang Z., Zheng S., Hu A. Zinc nutrition and metabolism of plants as influenced by supply of phosphorus and zinc. Pedosphere. 1999;9:265–274.

Joshi A.K., Crossa J., Arun B., Chand R., Trethowan R., Vargas M., Ortiz-Monasterio I. Genotype × environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India. Field Crops Res. 2010;116:268–277. doi: 10.1016/j.fcr.2010.01.004. DOI

Mousavi S.R., Galavi M., Rezaei M. The interaction of zinc with other elements in plants: A review. Int. J. Agric. Crop Sci. 2012;4:1881–1884.

Ghasemi-Fasaei R., Ronaghi A. Interaction of Iron with Copper, Zinc, and Manganese in Wheat as Affected by Iron and Manganese in a Calcareous Soil. J. Plant Nutr. 2008;31:839–848. doi: 10.1080/01904160802043148. DOI

Rajaie M., Ejraie A.K., Owliaie H.R., Tavakoli A.R. Effect of zinc and boron interaction on growth and mineral composition of lemon seedlings in a calcareous soil. Int. J. Plant Prod. 2012;3:39–50.

Malewar G.U., Kate S.D., Waikar S.L., Ismail S. Interaction effects of zinc and boron on yield, nutrient uptake and quality of mustard (Brassica juncea L.) on a typic haplustert. J. Indian Soc. Soil Sci. 2001;49:763–765.

Kurdi F., Doner H.E. Zinc and copper sorption and interaction in soils. Soil Sci. Soc. Am. J. 1983;47:873–876. doi: 10.2136/sssaj1983.03615995004700050006x. DOI

Buerkert A., Haake C., Ruckwied M., Marschner H. Phosphorus application affects the nutritional quality of millet grain in the Sahel. Field Crops Res. 1998;57:223–235. doi: 10.1016/S0378-4290(97)00136-6. DOI

Egli I., Davidsson L., Zeder C., Walczyk T., Hurrell R. Dephytinization of a Complementary Food Based on Wheat and Soy Increases Zinc, but Not Copper, Apparent Absorption in Adults. J. Nutr. 2004;134:1077–1080. doi: 10.1093/jn/134.5.1077. PubMed DOI

Hotz C., Gibson R.S. Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. J. Nutr. 2007;137:1097–1100. doi: 10.1093/jn/137.4.1097. PubMed DOI

Gibson R.S. Zinc: The missing link in combating micronutrient malnutrition in developing countries. Proc. Nutr. Soc. 2006;65:51–60. doi: 10.1079/PNS2005474. PubMed DOI

Welch R.M. Mineral Nutrition of Crops: Fundamental Mechanisms and Implications. Food Products Press; New York, NY, USA: 1999. Importance of seed mineral nutrient reserves in crop growth and development; pp. 205–226.

Braun H.J. Prospects of turkey’s wheat industry, Breeding and Biotechnology. In: Ekiz H., editor. Hububat Sempozyum. International Winter Cereal Research Center; Konya, Turkey: 1999. pp. 1–744.

White P.J., Broadley M. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009;182:49–84. doi: 10.1111/j.1469-8137.2008.02738.x. PubMed DOI

Davis D.R. Declining Fruit and Vegetable Nutrient Composition: What Is the Evidence? HortScience. 2009;44:15–19. doi: 10.21273/HORTSCI.44.1.15. DOI

Garvin D.F., Welch R.M., Finley J.W. Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J. Sci. Food Agric. 2006;86:2213–2220. doi: 10.1002/jsfa.2601. DOI

White P.J., Broadley M. Physiological Limits to Zinc Biofortification of Edible Crops. Front. Plant Sci. 2011;2:80. doi: 10.3389/fpls.2011.00080. PubMed DOI PMC

Graham R.D., Welch R.M., Bouis H. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps. Adv. Agron. 2001;70:77–142.

Urbano G., Lopez-Jurado M., Aranda P., Vidal-Valverde C., Tenorio E., Porres J. The role of phytic acid in legumes: An-tinutrient or beneficial function? J. Physiol. Biochem. 2000;56:283–294. doi: 10.1007/BF03179796. PubMed DOI

Gemede H.F., Ratta N. Antinutritional factors in plant foods: Potential health benefits and adverse effects. Int. J. Nutr. Food Sci. 2014;3:284–289. doi: 10.11648/j.ijnfs.20140304.18. DOI

Nissar J., Ahad T., Naik H.R., Hussain S.Z. A review phytic acid: As antinutrient or nutraceutical. J. Pharmacogn. Phytochem. 2017;6:1554–1560.

Guttieri M.J., Peterson K.M., Souza E.J. Agronomic Performance of Low Phytic Acid Wheat. Crop Sci. 2006;46:2623–2629. doi: 10.2135/cropsci2006.01.0008. DOI

Oltmans S.E., Fehr W.R., Welke G.A., Raboy V., Peterson K.L. Agronomic and Seed Traits of Soybean Lines with Low-Phytate Phosphorus. Crop Sci. 2005;45:593–598. doi: 10.2135/cropsci2005.0593. DOI

Schachtman D., Barker S.J. Molecular approaches for increasing the micronutrient density in edible portions of food crops. Field Crops Res. 1999;60:81–92. doi: 10.1016/S0378-4290(98)00134-8. DOI

Eide D.J. Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta Bioenerg. 2006;1763:711–722. doi: 10.1016/j.bbamcr.2006.03.005. PubMed DOI

Ramesh S.A., Choimes S., Schachtman D. Over-expression of an Arabidopsis zinc transporter in Hordeum vulgare increases short term zinc uptake after zinc deprivation and seed zinc content. Plant Mol. Biol. 2004;54:373–385. doi: 10.1023/B:PLAN.0000036370.70912.34. PubMed DOI

Alloway B.J. Zinc in Soils and Crop Nutrition. IZA Publications; International Zinc Association; Brussels, Belgium: 2004. pp. 1–116.

White J.G., Zasoski R.J. Mapping soil micronutrients. Field Crops Res. 1999;60:11–26. doi: 10.1016/S0378-4290(98)00130-0. DOI

Darnton-Hill I., Webb P., Harvey P.W., Hunt J.M., Dalmiya N., Chopra M., Ball M.J., Bloem M.W., De Benoist B. Micronutrient deficiencies and gender: Social and economic costs. Am. J. Clin. Nutr. 2005;81:1198S–1205S. doi: 10.1093/ajcn/81.5.1198. PubMed DOI

Wang Y.-H., Zou C.-Q., Mirza Z., Li H., Zhang Z.-Z., Li D.-P., Xu C.-L., Zhou X.-B., Shi X.-J., Xie D.-T., et al. Cost of agronomic biofortification of wheat with zinc in China. Agron. Sustain. Dev. 2016;36:44. doi: 10.1007/s13593-016-0382-x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...