Identification of alkaline pH optimum of human glucokinase because of ATP-mediated bias correction in outcomes of enzyme assays

. 2019 Aug 06 ; 9 (1) : 11422. [epub] 20190806

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31388064
Odkazy

PubMed 31388064
PubMed Central PMC6684659
DOI 10.1038/s41598-019-47883-1
PII: 10.1038/s41598-019-47883-1
Knihovny.cz E-zdroje

Adenosine triphosphate (ATP) is a crucial substrate and energy source commonly used in enzyme reactions. However, we demonstrated that the addition of this acidic compound to enzyme assay buffers can serve as a source of unnoticed pH changes. Even relatively low concentrations of ATP (up to 5 mM) shifted pH of reaction mixtures to acidic values. For example, Tris buffer lost buffering capacity at pH 7.46 by adding ATP at a concentration higher than 2 mM. In addition to the buffering capacity, the pH shifts differed with respect to the buffer concentration. High ATP concentrations are commonly used in hexokinase assays. We demonstrated how the presence of ATP affects pH of widely used enzyme assay buffers and inversely affected KM of human hexokinase 2 and S0.5 of human glucokinase. The pH optimum of human glucokinase was never reported before. We found that previously reported optimum of mammalian glucokinase was incorrect, affected by the ATP-induced pH shifts. The pH optimum of human glucokinase is at pH 8.5-8.7. Suggested is the full disclosure of reaction conditions, including the measurement of pH of the whole reaction mixtures instead of measuring pH prior to the addition of all the components.

Zobrazit více v PubMed

Ferreira CM, Pinto IS, Soares EV, Soares HM. Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions – a review. RSC Adv. 2015;5:30989–31003. doi: 10.1039/C4RA15453C. DOI

Lin H, et al. Discovery of a novel 2,6-disubstituted glucosamine series of potent and selective hexokinase 2 inhibitors. ACS Med. Chem. Lett. 2015;7:217–222. doi: 10.1021/acsmedchemlett.5b00214. PubMed DOI PMC

Zhang HN, et al. Systematic identification of arsenic-binding proteins reveals that hexokinase-2 is inhibited by arsenic. Proc. Natl. Acad. Sci. USA. 2015;112:15084–15089. doi: 10.1073/pnas.1521316112. PubMed DOI PMC

Fujieda H, et al. Discovery of a potent glucokinase activator with a favorable liver and pancreas distribution pattern for the treatment of type 2 diabetes mellitus. Eur. J. Med. Chem. 2018;156:269–294. doi: 10.1016/j.ejmech.2018.06.060. PubMed DOI

Salas J, Salas M, Vinuela E, Sols A. Glucokinase of rabbit liver. J. Biol. Chem. 1965;240:1014–1018. PubMed

Kumar, D. P., Tiwari, A. & Bhat, R. Effect of pH on the stability and structure of yeast hexokinase A. Acidic amino acid residues in the cleft region are critical for the opening and the closing of the structure. J. Biol. Chem. 279, 32093–32099 (2004). PubMed

Solheim, L. P. & Fromm, H. J. pH kinetic studies of bovine brain hexokinase. Biochemistry19, 6074–6080 (1980). PubMed

Šimčíková D, Kocková L, Vackářová K, Těšínský M, Heneberg P. Evidence-based tailoring of bioinformatics approaches to optimize methods that predict the effects of nonsynonymous amino acid substitutions in glucokinase. Sci. Rep. 2017;7:9499. doi: 10.1038/s41598-017-09810-0. PubMed DOI PMC

García-Herrero CM, et al. Functional analysis of human glucokinase gene mutations causing MODY2: exploring the regulatory mechanisms of glucokinase activity. Diabetologia. 2007;50:325–333. doi: 10.1007/s00125-006-0542-7. PubMed DOI

Davis EA, et al. Mutants of glucokinase cause hypoglycaemia- and hyperglycaemia syndromes and their analysis illuminates fundamental quantitative concepts of glucose homeostasis. Diabetologia. 1999;42:1175–1186. doi: 10.1007/s001250051289. PubMed DOI

Nawaz MH, et al. The catalytic inactivation of the N-half of human hexokinase 2 and structural and biochemical characterization of its mitochondrial conformation. Biosci. Rep. 2018;38:BSR20171666. doi: 10.1042/BSR20171666. PubMed DOI PMC

Fidelman ML, Seeholzer SH, Walsh KB, Moore RD. Intracellular pH mediates action of insulin on glycolysis in frog skeletal muscle. Am. J. Physiol. 1982;124:87–93. doi: 10.1152/ajpcell.1982.242.1.C87. PubMed DOI

Ui M. A role of phosphofructokinase in pH-dependent regulation of glycolysis. Biochim. Biophys. Acta. 1966;124:310–322. doi: 10.1016/0304-4165(66)90194-2. PubMed DOI

Trivedi B, Danforth WH. Effect of pH on the kinetics of frog muscle phosphofructokinase. J. Biol. Chem. 1966;241:4110–4112. PubMed

Dobson GP, Yamamoto E, Hochachka PW. Phosphofructokinase control in muscle: nature and reversal of pH-dependent ATP inhibition. Am. J. Physiol. 1986;250:R71–R76. PubMed

Erecińska M, Deas J, Silver IA. The effect of pH on glycolysis and phosphofructokinase activity in cultured cells and synaptosomes. J. Neurochem. 1995;65:2765–2772. doi: 10.1046/j.1471-4159.1995.65062765.x. PubMed DOI

Frieden C, Gilbert HR, Bock PE. Phosphofructokinase III. Correlation of the regulatory kinetic and molecular properties of the rabbit muscle enzyme. J. Biol. Chem. 1976;251:5644–5647. PubMed

Andrés V, Carreras J, Cussó R. Regulation of muscle phosphofructokinase by physiological concentrations of bisphosphorylated hexoses: effect of alkalinization. Biochem. Biophys. Res. Commun. 1990;172:328–334. doi: 10.1016/S0006-291X(05)80213-X. PubMed DOI

Gray JA. Kinetics of enamel dissolution during formation of incipient caries-like lesions. Arch. Oral Biol. 1966;11:397–422. doi: 10.1016/0003-9969(66)90105-1. PubMed DOI

Seglen PO. The effect of perfusate pH on respiration and glycolysis in the isolated rat liver perfused with an erythrocyte- and protein-free medium. Biochim. Biophys. Acta. 1972;264:398–410. doi: 10.1016/0304-4165(72)90002-5. PubMed DOI

Wu TF, Davis EJ. Regulation of glycolytic flux in an energetically controlled cell-free system: the effects of adenine nucleotide ratios, inorganic phosphate, pH, and citrate. Arch. Biochem. Biophys. 1981;209:85–89. doi: 10.1016/0003-9861(81)90260-5. PubMed DOI

Folbergrová J, MacMillan V, Siesjö BK. The effect of hypercapnic acidosis upon some glycolytic and Krebs cycle-associated intermediates in the rat brain. J. Neurochem. 1972;19:2507–2517. doi: 10.1111/j.1471-4159.1972.tb01310.x. PubMed DOI

Webb BA, Chimenti M, Jacobson MP, Barber DL. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer. 2011;11:671–677. doi: 10.1038/nrc3110. PubMed DOI

White KA, Grillo-Hill BK, Barber DL. Cancer cell behaviors mediated by dysregulated pH dynamics at a glance. J. Cell Sci. 2017;130:663–669. doi: 10.1242/jcs.195297. PubMed DOI PMC

Reshkin SJ, et al. Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes. FASEB J. 2000;14:2185–2197. doi: 10.1096/fj.00-0029com. PubMed DOI

Grillo-Hill BK, Choi C, Jimenez-Vidal M, Barber DL. Increased H+ efflux is sufficient to induce dysplasia and necessary for viability with oncogene expression. eLife. 2015;4:e03270. doi: 10.7554/eLife.03270. PubMed DOI PMC

Cardone RA, et al. A novel NHE1-centered signaling cassette drives epidermal growth factor receptor-dependent pancreatic tumor metastasis and is a target for combination therapy. Neoplasia. 2015;17:155–166. doi: 10.1016/j.neo.2014.12.003. PubMed DOI PMC

Tatapudy S, Aloisio F, Barber D, Nystul T. Cell fate decisions: emerging roles for metabolic signals and cell morphology. EMBO Rep. 2017;18:2105–2118. doi: 10.15252/embr.201744816. PubMed DOI PMC

Putney LK, Barber DL. Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition. J. Biol. Chem. 2003;278:44645–44649. doi: 10.1074/jbc.M308099200. PubMed DOI

Denker SP, Barber DL. Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J. Cell Biol. 2002;159:1087–1096. doi: 10.1083/jcb.200208050. PubMed DOI PMC

Stock C, Schwab A. Protons make tumor cells move like clockwork. Pflugers Arch. 2009;458:981–992. doi: 10.1007/s00424-009-0677-8. PubMed DOI

Ulmschneider B, et al. Increased intracellular pH is necessary for adult epithelial and embryonic stem cell differentiation. J. Cell Biol. 2016;215:345–355. doi: 10.1083/jcb.201606042. PubMed DOI PMC

Singh Y, et al. Alkaline cytosolic pH and high sodium hydrogen exchanger 1 (NHE1) activity in Th9 cells. J. Biol. Chem. 2016;291:23662–23671. doi: 10.1074/jbc.M116.730259. PubMed DOI PMC

Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Canc. 2016;16:635–649. doi: 10.1038/nrc.2016.77. PubMed DOI PMC

Wang L, et al. Hexokinase 2-mediated Warburg effect is required for PTEN- and p53-deficiency-driven prostate cancer growth. Cell Rep. 2014;8:1461–1474. doi: 10.1016/j.celrep.2014.07.053. PubMed DOI PMC

Quach CH, et al. Mild alkalization acutely triggers the Warburg effect by enhancing hexokinase activity via voltage-dependent anion channel binding. PLoS ONE. 2016;11:e0159529. doi: 10.1371/journal.pone.0159529. PubMed DOI PMC

Harduindey S, et al. Cellular acidification as a new approach to cancer treatment and to the understanding and therapeutics of neurodegenerative diseases. Semin Canc. Biol. 2017;43:157–179. doi: 10.1016/j.semcancer.2017.02.003. PubMed DOI

Hardonniere K, Huc L, Sergent O, Holme JA, Lagadic-Gossmann D. Environmental carcinogenesis and pH homeostasis: Not only a matter of dysregulated metabolism. Semin Canc. Biol. 2017;43:49–65. doi: 10.1016/j.semcancer.2017.01.001. PubMed DOI

Liang Y, et al. Variable effects of maturity-onset-diabetes-of-youth (MODY)-associated glucokinase mutations on substrate interactions and stability of the enzyme. Biochem. J. 1995;309:167–173. doi: 10.1042/bj3090167. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...