Evidence-based tailoring of bioinformatics approaches to optimize methods that predict the effects of nonsynonymous amino acid substitutions in glucokinase
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28842611
PubMed Central
PMC5573313
DOI
10.1038/s41598-017-09810-0
PII: 10.1038/s41598-017-09810-0
Knihovny.cz E-zdroje
- MeSH
- aktivace enzymů MeSH
- diabetes mellitus 2. typu genetika metabolismus MeSH
- glukokinasa chemie genetika MeSH
- kinetika MeSH
- lidé MeSH
- molekulární evoluce MeSH
- náchylnost k nemoci MeSH
- substituce aminokyselin * MeSH
- výpočetní biologie * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glukokinasa MeSH
Computational methods that allow predicting the effects of nonsynonymous substitutions are an integral part of exome studies. Here, we validated and improved their specificity by performing a comprehensive bioinformatics analysis combined with experimental and clinical data on a model of glucokinase (GCK): 8835 putative variations, including 515 disease-associated variations from 1596 families with diagnoses of monogenic diabetes (GCK-MODY) or persistent hyperinsulinemic hypoglycemia of infancy (PHHI), and 126 variations with available or newly reported (19 variations) data on enzyme kinetics. We also proved that high frequency of disease-associated variations found in patients is closely related to their evolutionary conservation. The default set prediction methods predicted correctly the effects of only a part of the GCK-MODY-associated variations and completely failed to predict the normoglycemic or PHHI-associated variations. Therefore, we calculated evidence-based thresholds that improved significantly the specificity of predictions (≤75%). The combined prediction analysis even allowed to distinguish activating from inactivating variations and identified a group of putatively highly pathogenic variations (EVmutation score <-7.5 and SNAP2 score >70), which were surprisingly underrepresented among MODY patients and thus under negative selection during molecular evolution. We suggested and validated the first robust evidence-based thresholds, which allow improved, highly specific predictions of disease-associated GCK variations.
Zobrazit více v PubMed
Jetton TL, et al. Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. J. Biol. Chem. 1994;269:3641–3654. PubMed
Lenzen S. A fresh view of glycolysis and glucokinase regulation: history and current status. J. Biol. Chem. 2014;289:12189–12194. doi: 10.1074/jbc.R114.557314. PubMed DOI PMC
Larion M, et al. Kinetic cooperativity in human pancreatic glucokinase originates from millisecond dynamics of the small domain. Angew. Chem. Int. Ed. 2015;127:8247–8250. doi: 10.1002/ange.201501204. PubMed DOI PMC
Osbak KK, et al. Update on mutations in glucokinase (GCK), which cause maturity‐onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum. Mutat. 2009;30:1512–1526. doi: 10.1002/humu.21110. PubMed DOI
George DC, et al. Evolution-and structure-based computational strategy reveals the impact of deleterious missense mutations on MODY 2 (maturity-onset diabetes of the young, type 2) Theranostics. 2014;4:366–385. doi: 10.7150/thno.7473. PubMed DOI PMC
Glaser B, et al. Familiar hyperinsulinism caused by an activating glucokinase mutation. N. Engl. J. Med. 1998;338:226–230. doi: 10.1056/NEJM199801223380404. PubMed DOI
Massa O, et al. High prevalence of glucokinase mutations in Italian children with MODY. Influence on glucose tolerance, first-phase insulin response, insulin sensitivity and BMI. Diabetologia. 2001;44:898–905. doi: 10.1007/s001250100530. PubMed DOI
Gloyn AL, et al. Prevalence of GCK mutations in individuals screened for fasting hyperglycaemia. Diabetologia. 2009;52:172–174. doi: 10.1007/s00125-008-1188-4. PubMed DOI
García-Herrero C-M, et al. Functional characterization of MODY2 mutations highlights the importance of the fine-tuning of glucokinase and its role in glucose sensing. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0030518. PubMed DOI PMC
Steele AM, et al. The previously reported T342P GCK missense variant is not a pathogenic mutation causing MODY. Diabetologia. 2011;54:2202–2205. doi: 10.1007/s00125-011-2194-5. PubMed DOI
Hopf TA, et al. Mutation effects predicted from sequence co-variation. Nat. Biotechnol. 2017;35:128–135. doi: 10.1038/nbt.3769. PubMed DOI PMC
Kamata K, Mitsuya M, Nishimura T, Eiki J, Nagata Y. Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure. 2004;12:429–438. doi: 10.1016/j.str.2004.02.005. PubMed DOI
Molnes J, et al. Binding of ATP at the active site of human pancreatic glucokinase-nucleotide-induced conformational changes with possible implications for its kinetic cooperativity. FEBS J. 2011;278:2372–2386. doi: 10.1111/j.1742-4658.2011.08160.x. PubMed DOI PMC
Ensembl genome browser 88. Available from http://www.ensembl.org/ (2017).
Flannick J, et al. Assessing the phenotypic effects in the general population of rare variants in genes for a dominant Mendelian form of diabetes. Nat. Genet. 2013;45:1380–1385. doi: 10.1038/ng.2794. PubMed DOI PMC
Dupuis J, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 2010;42:105–116. doi: 10.1038/ng.520. PubMed DOI PMC
Romeo S, et al. Rare loss-of-function mutations in ANGPTL family members contribute to plasma triglyceride levels in humans. J. Clin. Invest. 2009;119:70–79. PubMed PMC
Flanagan SE, Patch AM, Ellard S. Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet. Test. Mol.Biomarkers. 2010;14:533–537. doi: 10.1089/gtmb.2010.0036. PubMed DOI
Rees MG, et al. Correlation of rare coding variants in the gene encoding human glucokinase regulatory protein with phenotypic, cellular, and kinetic outcomes. J. Clin. Invest. 2012;122:205–217. doi: 10.1172/JCI46425. PubMed DOI PMC
Johansen CT, Wang J, Lanktree MB. Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia. Nat. Genet. 2010;42:684–687. doi: 10.1038/ng.628. PubMed DOI PMC
Beer NL, et al. Insights into the pathogenicity of rare missense GCK variants from the identification and functional characterization of compound heterozygous and double mutations inherited in cis. Diabetes Care. 2012;35:1482–1484. doi: 10.2337/dc11-2420. PubMed DOI PMC
Kanthimathi S, et al. Glucokinase gene mutations (MODY 2) in Asian Indians. Diabetes Technol. Therap. 2014;16:180–185. doi: 10.1089/dia.2013.0244. PubMed DOI
Estalella I, et al. Mutations in GCK and HNF-1α explain the majority of cases with clinical diagnosis of MODY in Spain. Clin. Endocrinol. 2007;67:538–546. PubMed
Valentínová L, et al. Identification and functional characterization of novel glucokinase mutations causing maturity-onset diabetes of the young in Slovakia. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0034541. PubMed DOI PMC
Sagen JV, et al. From clinicogenetic studies of maturity-onset diabetes of the young to unraveling complex mechanisms of glucokinase regulation. Diabetes. 2006;55:1713–1722. doi: 10.2337/db05-1513. PubMed DOI
Gloyn AL, et al. Insights into the structure and regulation of glucokinase from a novel mutation (V62M), which causes maturity-onset diabetes of the young. J. Biol. Chem. 2005;280:14105–14113. doi: 10.1074/jbc.M413146200. PubMed DOI
Rizzo MA, Piston DW. Regulation of β cell glucokinase by S-nitrosylation and association with nitric oxide synthase. J. Cell Biol. 2003;161:243–248. doi: 10.1083/jcb.200301063. PubMed DOI PMC
Pruhova S, et al. Glucokinase diabetes in 103 families from a country-based study in the Czech Republic: geographically restricted distribution of two prevalent GCK mutations. Pediatr. Diabetes. 2010;11:529–535. doi: 10.1111/j.1399-5448.2010.00646.x. PubMed DOI
Milenković T, Zdravković D, Mitrović K. [Novel glucokinase mutation in a boy with maturity-onset diabetes of the young] Srp. Arh. Celok. Lek. 2008;136:542–544. doi: 10.2298/SARH0810542M. PubMed DOI
Pinterova D, et al. Six novel mutations in the GCK gene in MODY patients. Clin. Genet. 2007;71:95–96. doi: 10.1111/j.1399-0004.2006.00729.x. PubMed DOI
Cárdenas ML, Rabajille E, Niemeyer H. Suppression of kinetic cooperativity of hexokinase D (glucokinase) by competitive inhibitors. A slow transition model. Eur. J. Biochem. 1984;145:163–171. doi: 10.1111/j.1432-1033.1984.tb08536.x. PubMed DOI
Wolf AJ, et al. Hexokinase is an innate immune receptor for the detection of bacterial peptidoglycan. Cell. 2016;166:624–636. doi: 10.1016/j.cell.2016.05.076. PubMed DOI PMC
Lukášová P, et al. Screening of mutations and polymorphisms in the glucokinase gene in Czech diabetic and healthy control populations. Physiol. Res. 2008;57:S99–S108. PubMed
Pruhova S, et al. Genetic epidemiology of MODY in the Czech republic: new mutations in the MODY genes HNF-4α, GCK and HNF-1α. Diabetologia. 2003;46:291–295. doi: 10.1007/s00125-002-1010-7. PubMed DOI
Urbanová J, et al. Positivity for islet cell autoantibodies in patients with monogenic diabetes is associated with later diabetes onset and higher HbA1c level. Diabet. Med. 2014;31:466–471. doi: 10.1111/dme.12314. PubMed DOI
García-Herrero CM, et al. Functional analysis of human glucokinase gene mutations causing MODY2: exploring the regulatory mechanisms of glucokinase activity. Diabetologia. 2007;50:325–333. doi: 10.1007/s00125-006-0542-7. PubMed DOI
Davis EA, et al. Mutants of glucokinase cause hypoglycaemia- and hyperglycaemia syndromes and their analysis illuminates fundamental quantitative concepts of glucose homeostasis. Diabetologia. 1999;42:1175–1186. doi: 10.1007/s001250051289. PubMed DOI
Matschinsky FM. Assessing the potential of glucokinase activators in diabetes therapy. Nat. Rev. Drug Discov. 2009;8:399–416. doi: 10.1038/nrd2850. PubMed DOI
Matschinsky, F. M. et al. The glucokinase system and the regulation of blood sugar. In Matschinsky, D. M. & Magnuson, M. A., Eds Molecular pathogenesis of MODYs. Basel, Karger, pp. 99–108 (2000).