The general mRNA exporters Mex67 and Mtr2 play distinct roles in nuclear export of tRNAs in Trypanosoma brucei

. 2019 Sep 19 ; 47 (16) : 8620-8631.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31392978

Transfer RNAs (tRNAs) are central players in protein synthesis, which in Eukarya need to be delivered from the nucleus to the cytoplasm by specific transport receptors, most of which belong to the evolutionarily conserved beta-importin family. Based on the available literature, we identified two candidates, Xpo-t and Xpo-5 for tRNA export in Trypanosoma brucei. However, down-regulation of expression of these genes did not disrupt the export of tRNAs to the cytoplasm. In search of alternative pathways, we tested the mRNA export complex Mex67-Mtr2, for a role in tRNA nuclear export, as described previously in yeast. Down-regulation of either exporter affected the subcellular distribution of tRNAs. However, contrary to yeast, TbMex67 and TbMtr2 accumulated different subsets of tRNAs in the nucleus. While TbMtr2 perturbed the export of all the tRNAs tested, silencing of TbMex67, led to the nuclear accumulation of tRNAs that are typically modified with queuosine. In turn, inhibition of tRNA nuclear export also affected the levels of queuosine modification in tRNAs. Taken together, the results presented demonstrate the dynamic nature of tRNA trafficking in T. brucei and its potential impact not only on the availability of tRNAs for protein synthesis but also on their modification status.

Zobrazit více v PubMed

Segref A., Sharma K., Doye V., Hellwig A., Huber J., Lührmann R., Hurt E.. Mex67p, a novel factor for nuclear mRNA export, binds to both poly (A)+ RNA and nuclear pores. EMBO J. 1997; 16:3256–3271. PubMed PMC

Santos-Rosa H., Moreno H., Simos G., Segref A., Fahrenkrog B., Panté N., Hurt E.. Nuclear mRNA export requires complex formation between Mex67p and Mtr2p at the nuclear pores. Mol. Cell Biol. 1998; 18:6826–6838. PubMed PMC

Herold A., Klymenko T., Izaurralde E., Herold A., Klymenko T., Izaurralde E.. NXF1 / p15 heterodimers are essential for mRNA nuclear export in Drosophila. RNA. 2001; 7:1768–1780. PubMed PMC

Dostalova A., Käser S., Cristodero M., Schimanski B.. The nuclear mRNA export receptor Mex67-Mtr2 of Trypanosoma brucei contains a unique and essential zinc finger motif. Mol. Microbiol. 2013; 88:728–739. PubMed

Köhler A., Hurt E.. Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell Biol. 2007; 8:761–773. PubMed

Okamura M., Inose H., Masuda S.. RNA export through the NPC in eukaryotes. Genes (Basel). 2015; 6:124–149. PubMed PMC

Arts G.J., Fornerod M., Mattaj I.W.. Identification of a nuclear export receptor for tRNA. Curr. Biol. 1998; 8:305–314. PubMed

Hopper A.K., Schultz L.D., Shapiro R.A.. Processing of intervening sequences: a new yeast mutant which fails to excise intervening sequences from precursor tRNAs. Cell. 1980; 19:741–751. PubMed

Hurt D.J., Wang S.S., Lin Y.H., Hopper A.K.. Cloning and characterization of LOS1, a Saccharomyces cerevisiae gene that affects tRNA splicing. Mol. Cell Biol. 1987; 7:1208–1216. PubMed PMC

Görlich D., Dabrowski M., Bischoff F.R., Kutay U., Bork P., Hartmann E., Prehn S., Izaurralde E.. A novel class of RanGTP binding proteins. J Cell Biol. 1997; 138:65–80. PubMed PMC

Hellmuth K., Lau D.M., Bischoff F.R., Kunzler M., Hurt E.D., Simos G.. Yeast Los1p Has Properties of an Exportin-Like Nucleocytoplasmic Transport Factor for tRNA. Mol. Cell Biol. 1998; 18:6374–6386. PubMed PMC

Calado A., Treichel N., Müller E.-C., Otto A., Kutay U.. Exportin-5-mediated nuclear export of eukaryotic elongation factor 1A and tRNA. EMBO J. 2002; 21:6216–6224. PubMed PMC

O’Reilly A.J., Dacks J.B., Field M.C.. Evolution of the karyopherin-beta family of nucleocytoplasmic transport factors; ancient origins and continued specialization. PLoS One. 2011; 6:e19308. PubMed PMC

Kramer E.B., Hopper A.K.. Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. 2013; 110:21042–21047. PubMed PMC

Feng W., Hopper A.K.. A Los1p-independent pathway for nuclear export of intronless tRNAs in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 2002; 99:5412–5417. PubMed PMC

Murthi A., Shaheen H.H., Huang H.-Y., Preston M.A., Lai T.-P., Phizicky E.M., Hopper A.K.. Regulation of tRNA bidirectional Nuclear-Cytoplasmic trafficking in Saccharomyces cerevisiae. Mol. Biol. Cell. 2010; 21:639–649. PubMed PMC

Sarkar S., Hopper A.K.. tRNA nuclear export in Saccharomyces cerevisiae: In situ hybridization analysis. Mol. Biol. Cell. 1998; 9:3041–3055. PubMed PMC

Huang H.Y., Hopper A.K.. In vivo biochemical analyses reveal distinct roles of Beta-importins and eEF1A in tRNA subcellular traffic. Genes Dev. 2015; 29:772–783. PubMed PMC

Lund E., Guttinger S., Calado A., Dahlberg J.E., Kutay U.. Nuclear export of MicroRNA precursors. Science. 2004; 303:95–99. PubMed

Brownawell A.M., Macara I.G.. Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins. J. Cell Biol. 2002; 156:53–64. PubMed PMC

Takano A., Endo T., Yoshihisa T.. tRNA actively shuttles between the nucleus and cytosol in Yeast. Science. 2005; 309:140–142. PubMed

Wu J., Bao A., Chatterjee K., Wan Y., Hopper A.K.. Genome-wide screen uncovers novel pathways for tRNA processing and nuclear–cytoplasmic dynamics. Genes Dev. 2015; 29:2633–2644. PubMed PMC

Chatterjee K., Majumder S., Wan Y., Shah V., Wu J., Huang H.Y., Hopper A.K.. Sharing the load: Mex67–Mtr2 cofunctions with Los1 in primary tRNA nuclear export. Genes Dev. 2017; 31:2186–2198. PubMed PMC

Ohira T., Suzuki T.. Retrograde nuclear import of tRNA precursors is required for modified base biogenesis in yeast. Proc. Natl. Acad. Sci. U.S.A. 2011; 108:10502–10507. PubMed PMC

Shaheen H.H., Hopper A.K.. Retrograde movement of tRNAs from the cytoplasm to the nucleus in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 2005; 102:11290–11295. PubMed PMC

Huang H.-Y., Hopper A.. Multiple layers of Stress-Induced regulation in tRNA Biology. Life. 2016; 6:16. PubMed PMC

Yoshihisa T., Yunoki-Esaki K., Ohshima C., Tanaka N., Endo T.. Possibility of cytoplasmic pre-tRNA Splicing: the Yeast tRNA slicing endonuclease mainly localizes on the mitochondria. Mol. Biol. Cell. 2003; 14:3266–3279. PubMed PMC

Whitney M.L., Hurto R.L., Shaheen H.H., Hopper A.K.. Rapid and reversible nuclear accumulation of cytoplasmic tRNA in response to nutrient availability. Mol. Biol. Cell. 2007; 18:2678–2688. PubMed PMC

Barrett M.P., Burchmore R.J.S., Stich A., Lazzari J.O., Frasch A.C., Cazzulo J.J.J., Krishna S.. The trypanosomiases. Lancet. 2003; 362:1469–1480. PubMed

Büscher P., Cecchi G., Jamonneau V., Priotto G.. Human African trypanosomiasis. Lancet. 2017; 390:2397–2409. PubMed

Daniels J.-P., Gull K., Wickstead B.. Cell biology of the trypanosome genome. Microbiol. Mol. Biol. Rev. 2010; 74:552–569. PubMed PMC

Biton M., Mandelboim M., Arvatz G., Michaeli S.. RNAi interference of XPO1 and Sm genes and their effect on the spliced leader RNA in Trypanosoma brucei. Mol. Biochem. Parasitol. 2006; 150:132–143. PubMed

Bühlmann M., Walrad P., Rico E., Ivens A., Capewell P., Naguleswaran A., Roditi I., Matthews K.R.. NMD3 regulates both mRNA and rRNA nuclear export in African trypanosomes via an XPOI-linked pathway. Nucleic Acids Res. 2015; 43:4491–4504. PubMed PMC

Lopes R.R.S., Silveira G. de O., Eitler R., Vidal R.S., Kessler A., Hinger S., Paris Z., Alfonzo J.D., Polycarpo C.. The essential function of the Trypanosoma brucei Trl1 homolog in procyclic cells is maturation of the intron-containing tRNATyr. RNA. 2016; 22:1190–1199. PubMed PMC

Kessler A.C., Kulkarni S.S., Paulines M.J., Rubio M.A.T., Limbach P.A., Paris Z., Alfonzo J.D.. Retrograde nuclear transport from the cytoplasm is required for tRNATyr maturation in T. brucei. RNA Biol. 2017; 15:528–536. PubMed PMC

Wickstead B., Ersfeld K., Gull K.. Targeting of a tetracycline-inducible expression system to the transcriptionally silent minichromosomes of Trypanosoma brucei. Mol. Biochem. Parasitol. 2002; 125:211–216. PubMed

Chomczynski P. Single-Step method of RNA isolation by acid guanidinium extraction. Anal. Biochem. 1987; 162:156–159. PubMed

Aslett M., Aurrecoechea C., Berriman M., Brestelli J., Brunk B.P., Carrington M., Depledge D.P., Fischer S., Gajria B., Gao X. et al. .. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010; 38:457–462. PubMed PMC

Marchetti M.A., Tschudi C., Kwon H., Wolin S.L., Ullu E.. Import of proteins into the trypanosome nucleus and their distribution at karyokinesis. J. Cell Sci. 2000; 906:899–906. PubMed

Hunter C.A., Aukerman M.J., Sun H., Fokina M., Poethig S.R.. PAUSED encodes the Arabidopsis Exportin-t ortholog. Plant Physiol. 2003; 132:2135–2143. PubMed PMC

Li J., Chen X.. PAUSED, a Putative Exportin-t, acts pleiotropically in arabidopsis development but is dispensable for viability. Plant Physiol. 2003; 132:1913–1924. PubMed PMC

Cherkasova V., Lopez Maury L., Bacikova D., Pridham K., Bahler J., Maraia R.J.. Altered nuclear tRNA metabolism in La-deleted Schizosaccharomyces pombe is accompanied by a nutritional stress response involving Atf1p and Pcr1p that is suppressible by Xpo-t/Los1p. Mol. Biol. Cell. 2012; 23:480–491. PubMed PMC

Blomen V.A., Majek P., Jae L.T., Bigenzahn J.W., Nieuwenhuis J., Staring J., Sacco R., van Diemen F.R., Olk N., Stukalov A. et al. .. Gene essentiality and synthetic lethality in haploid human cells. Science. 2015; 350:1092–1096. PubMed

Lippai M., Tirián L., Boros I., Mihály J., Erdélyi M., Belecz I., Máthé E., Pósfai J., Nagy A., Udvardy A. et al. .. The Ketel gene encodes a Drosophila homologue of importin-beta. Genetics. 2000; 156:1889–900. PubMed PMC

Braun I.C., Herold A., Rode M., Izaurralde E.. Nuclear export of mRNA by TAP/NXF1 requires two nucleoporin-binding sites but not p15. Mol. Cell Biol. 2002; 22:5405. PubMed PMC

Igloi G.L., Kössel H.. Affinity electrophoresis for monitoring terminal phosphorylation and the presence of queuosine in RNA. Application of polyacrylamide containing a covalently bound boronic acid. Nucleic Acids Res. 1985; 13:6881–6898. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...