Identification of a Dominant Chlorosis Phenotype Through a Forward Screen of the Triticum turgidum cv. Kronos TILLING Population

. 2019 ; 10 () : 963. [epub] 20190724

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31396255

Grantová podpora
BBS/E/J/000C0628 Biotechnology and Biological Sciences Research Council - United Kingdom

Durum wheat (Triticum turgidum) derives from a hybridization event approximately 400,000 years ago which led to the creation of an allotetraploid genome. The evolutionary recent origin of durum wheat means that its genome has not yet been fully diploidised. As a result, many of the genes present in the durum genome act in a redundant fashion, where loss-of-function mutations must be present in both gene copies to observe a phenotypic effect. Here, we use a novel set of induced variation within the cv. Kronos TILLING population to identify a locus controlling a dominant, environmentally dependent chlorosis phenotype. We carried out a forward screen of the sequenced cv. Kronos TILLING lines for senescence phenotypes and identified a line with a dominant early senescence and chlorosis phenotype. Mutant plants contained less chlorophyll throughout their development and displayed premature flag leaf senescence. A segregating population was classified into discrete phenotypic groups and subjected to bulked-segregant analysis using exome capture followed by next-generation sequencing. This allowed the identification of a single region on chromosome 3A, Yellow Early Senescence 1 (YES-1), which was associated with the mutant phenotype. While this phenotype was consistent across 4 years of field trials in the United Kingdom, the mutant phenotype was not observed when grown in Davis, CA (United States). To obtain further SNPs for fine-mapping, we isolated chromosome 3A using flow sorting and sequenced the entire chromosome. By mapping these reads against both the cv. Chinese Spring reference sequence and the cv. Kronos assembly, we could identify high-quality, novel EMS-induced SNPs in non-coding regions within YES-1 that were previously missed in the exome capture data. This allowed us to fine-map YES-1 to 4.3 Mb, containing 59 genes. Our study shows that populations containing induced variation can be sources of novel dominant variation in polyploid crop species, highlighting their importance in future genetic screens. We also demonstrate the value of using cultivar-specific genome assemblies alongside the gold-standard reference genomes particularly when working with non-coding regions of the genome. Further fine-mapping of the YES-1 locus will be pursued to identify the causal SNP underpinning this dominant, environmentally dependent phenotype.

Zobrazit více v PubMed

10+Wheat Genomes Project (2016).

Acevedo-Garcia J., Spencer D., Thieron H., Reinstädler A., Hammond-Kosack K., Phillips A. L., et al. (2017). PubMed DOI PMC

Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. PubMed DOI

Avni R., Zhao R., Pearce S., Jun Y., Uauy C., Tabbita F., et al. (2014). Functional characterization of PubMed DOI PMC

Borrill P., Adamski N., Uauy C. (2015). Genomics as the key to unlocking the polyploid potential of wheat. PubMed DOI

Borrill P., Harrington S. A., Simmonds J., Uauy C. (2018). Identification of transcription factors regulating senescence in wheat through gene regulatory network modelling. PubMed DOI PMC

Borrill P., Harrington S. A., Uauy C. (2019). Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat. PubMed DOI PMC

Borrill P., Ramirez-Gonzalez R., Uauy C. (2016). EXPVIP: a customizable RNA-seq data analysis and visualization platform. PubMed DOI PMC

Brinton J., Uauy C. (2019). A reductionist approach to dissecting grain weight and yield in wheat. PubMed DOI PMC

Clark J. W., Donoghue P. C. J. (2018). Whole-genome duplication and plant macroevolution. PubMed DOI

Clavijo B. J., Garcia Accinelli G., Wright J., Heavens D., Barr K., Yanes L., et al. (2017a). W2rap: a pipeline for high quality, robust assemblies of large complex genomes from short read data.

Clavijo B. J., Venturini L., Schudoma C., Accinelli G. G., Kaithakottil G., Wright J., et al. (2017b). An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. PubMed DOI PMC

Dodsworth S., Chase M. W., Leitch A. R. (2016). Is post-polyploidization diploidization the key to the evolutionary success of angiosperms? DOI

Doležel J., Vrána J., Šafář J., Bartoš J., Kubaláková M., Šimková H. (2012). Chromosomes in the flow to simplify genome analysis. PubMed DOI PMC

Dubcovsky J., Dvorak J. (2007). Genome plasticity a key factor in the success of polyploid wheat under domestication. PubMed DOI PMC

Fu D., Szücs P., Yan L., Helguera M., Skinner J. S., Von Zitzewitz J., et al. (2005). Large deletions within the first intron in PubMed DOI

Garrison E., Marth G. (2012).

Gebert M., Meschenmoser K., Svidová S., Weghuber J., Schweyen R., Eifler K., et al. (2009). A root-expressed magnesium transporter of the PubMed DOI PMC

Giorgi D., Farina A., Grosso V., Gennaro A., Ceoloni C., Lucretti S. (2013). FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PubMed DOI PMC

Greenwood J. R., Finnegan E. J., Watanabe N., Trevaskis B., Swain S. M. (2017). New alleles of the wheat domestication gene PubMed DOI

Harrington S. A., Cobo N., Karafiátová M., DoleŽel J., Borrill P., Uauy C. (2019a). Identification of a dominant chlorosis phenotype through a forward screen of the PubMed PMC

Harrington S. A., Overend L. E., Cobo N., Borrill P., Uauy C. (2019b). Conserved residues in the wheat ( PubMed PMC

Hoagland D. R., Arnon D. I. (1950).

Huang X., Feng Q., Qian Q., Zhao Q., Wang L., Wang A., et al. (2009). High-throughput genotyping by whole-genome resequencing. PubMed DOI PMC

International Wheat Genome Sequencing Consortium (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. PubMed DOI

Jupe F., Witek K., Verweij W., Sliwka J., Pritchard L., Etherington G. J., et al. (2013). Resistance gene enrichment sequencing (RenSeq) enables reannotation of THE NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations. PubMed DOI PMC

Kang K., Kim Y.-S., Park S., Back K. (2009). Senescence-induced serotonin biosynthesis and its role in delaying senescence in rice leaves. PubMed DOI PMC

Kim D., Langmead B., Salzberg S. L. (2015). HISAT: a fast spliced aligner with low memory requirements. PubMed DOI PMC

Kimura E., Bell J., Trostle C., Neely C., Drake D. (2016).

Krasileva K. V., Vasquez-Gross H. A., Howell T., Bailey P., Paraiso F., Clissold L., et al. (2017). Uncovering hidden variation in polyploid wheat. PubMed DOI PMC

Krzywinski M., Schein J., Birol İ, Connors J., Gascoyne R., Horsman D., et al. (2009). Circos: an information aesthetic for comparative genomics. PubMed DOI PMC

Kubaláková M., Vrána J., Číhalíková J., Šimková H., Doležel J. (2002). Flow karyotyping and chromosome sorting in bread wheat ( PubMed DOI

Li H. (2013).

Maccaferri M., Harris N. S., Twardziok S. O., Pasam R. K., Gundlach H., Spannagl M., et al. (2019). Durum wheat genome highlights past domestication signatures and future improvement targets. PubMed DOI

Mamanova L., Coffey A. J., Scott C. E., Kozarewa I., Turner E. H., Kumar A., et al. (2010). Target-enrichment strategies for next-generation sequencing. PubMed DOI

Mo Y., Howell T., Vasquez-Gross H., De Haro L. A., Dubcovsky J., Pearce S. (2018). Mapping causal mutations by exome sequencing in a wheat Tilling population: a tall mutant case study. PubMed DOI PMC

NOAA National Centers For Environmental Information (2017).

Paterson A. H., Wang X., Li J., Tang H. (2012). “Ancient and recent polyploidy in monocots,” in

Payandeh J., Pfoh R., Pai E. F. (2013). The structure and regulation of magnesium selective ion channels. PubMed DOI

Pearce S., Tabbita F., Cantu D., Buffalo V., Avni R., Vazquez-Gross H., et al. (2014). Regulation of Zn and Fe transporters by the PubMed DOI PMC

Peng J., Richards D. E., Hartley N. M., Murphy G. P., Devos K. M., Flintham J. E., et al. (1999). ‘Green revolution’ genes encode mutant gibberellin response modulators. PubMed DOI

R Core Team (2018).

Ramírez-González R. H., Borrill P., Lang D., Harrington S. A., Brinton J., Venturini L., et al. (2018). The transcriptional landscape of polyploid wheat. PubMed DOI

Ramirez-Gonzalez R. H., Segovia V., Bird N., Fenwick P., Holdgate S., Berry S., et al. (2015a). Rna-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. PubMed DOI

Ramirez-Gonzalez R. H., Uauy C., Caccamo M. (2015b). PolyMarker: a fast polyploid primer design pipeline. PubMed DOI PMC

Rodríguez-Leal D., Lemmon Z. H., Man J., Bartlett M. E., Lippman Z. B. (2017). Engineering quantitative trait variation for crop improvement by genome editing. PubMed DOI

Šimková H., Svensson J. T., Condamine P., Hřibová E., Suchánková P., Bhat P. R., et al. (2008). Coupling amplified Dna from flow-sorted chromosomes to high-density Snp mapping in barley. PubMed DOI PMC

Simons K. J., Fellers J. P., Trick H. N., Zhang Z., Tai Y.-S., Gill B. S., et al. (2006). Molecular Characterization of the major wheat domestication gene PubMed DOI PMC

Singh S., Giri M. K., Singh P. K., Siddiqui A., Nandi A. K. (2013). Down-regulation of PubMed DOI

Snowball K., Robson A. D. (1991).

Soltis P. S., Soltis D. E. (2016). Ancient WGD events as drivers of key innovations in angiosperms. PubMed DOI

Steuernagel B., Periyannan S. K., Hernández-Pinzón I., Witek K., Rouse M. N., Yu G., et al. (2016). Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. PubMed DOI

Uauy C. (2017). Wheat genomics comes of age. PubMed DOI

Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J. (2006). A NAC GENE regulating senescence improves grain protein, zinc, and iron content in wheat. PubMed DOI PMC

Uauy C., Wulff B. B. H., Dubcovsky J. (2017). Combining traditional mutagenesis with new high-throughput sequencing and genome editing to reveal hidden variation in polyploid wheat. PubMed DOI

Vrána J., Cápal P., Šimková H., Karafiátová M., Čížková J., Doležel J. (2016). Flow analysis and sorting of plant chromosomes. PubMed DOI

Vrána J., Kubaláková M., Šimková H., Číhalíková J., Lysák M. A., Doležel J. (2000). Flow sorting of mitotic chromosomes in common wheat ( PubMed PMC

Vullo A., Allot A., Zadissia A., Yates A., Luciani A., Moore B., et al. (2017). Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. PubMed DOI PMC

Wang W., Simmonds J., Pan Q., Davidson D., He F., Battal A., et al. (2018). Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of PubMed DOI PMC

Wang Y., He Y., Yang M., He J., Xu P., Shao M., et al. (2016). Fine mapping of a dominant gene conferring chlorophyll-deficiency in PubMed DOI PMC

Warnes G. R., Bolker B., Bonebakker L., Gentleman R., Huber W., Liaw A., et al. (2019).

Wellburn A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. PubMed DOI

Wickham H. (2016).

Wickham H., François R., Henry L., Müller K. (2019).

Wickham H., Henry L. (2018).

Wu H., Shi N., An X., Liu C., Fu H., Cao L., et al. (2018). Candidate genes for yellow leaf color in common wheat ( PubMed DOI PMC

Wysoker A., Handsaker B., Marth G., Abecasis G., Li H., Ruan J., et al. (2009). The sequence alignment/map format and samtools. PubMed DOI PMC

Yan L., Helguera M., Kato K., Fukuyama S., Sherman J., Dubcovsky J. (2004). Allelic variation at THE PubMed DOI

Yan L., Loukoianov A., Tranquilli G., Helguera M., Fahima T., Dubcovsky J. (2003). Positional cloning of the wheat vernalization gene PubMed DOI PMC

Zadoks J. C., Chang T. T., Konzak C. F. (1974). A decimal code for the growth stages of cereals. DOI

Zong Y., Wang Y., Li C., Zhang R., Chen K., Ran Y., et al. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. PubMed DOI

Zobrazit více v PubMed

Dryad
10.5061/dryad.g3r3hp7

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...