CdS quantum dots-based immunoassay combined with particle imprinted polymer technology and laser ablation ICP-MS as a versatile tool for protein detection
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31413275
PubMed Central
PMC6694198
DOI
10.1038/s41598-019-48290-2
PII: 10.1038/s41598-019-48290-2
Knihovny.cz E-resources
- MeSH
- Electrophoresis, Capillary MeSH
- Fluorescence MeSH
- Mass Spectrometry * MeSH
- Immunoassay methods MeSH
- Immunoglobulin G analysis MeSH
- Quantum Dots chemistry MeSH
- Laser Therapy * MeSH
- Molecular Imprinting * MeSH
- Mice MeSH
- Signal Processing, Computer-Assisted MeSH
- Polymers chemistry MeSH
- Proteins analysis MeSH
- Cadmium Compounds chemistry MeSH
- Sulfides chemistry MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- cadmium sulfide MeSH Browser
- Immunoglobulin G MeSH
- Polymers MeSH
- Proteins MeSH
- Cadmium Compounds MeSH
- Sulfides MeSH
For the first time, the combination of molecularly imprinted polymer (MIP) technology with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is presented with focus on an optimization of the LA-ICP-MS parameters such as laser beam diameter, laser beam fluence, and scan speed using CdS quantum dots (QDs) as a template and dopamine as a functional monomer. A non-covalent imprinting approach was employed in this study due to the simplicity of preparation. Simple oxidative polymerization of the dopamine that creates the self-assembly monolayer seems to be an ideal choice. The QDs prepared by UV light irradiation synthesis were stabilized by using mercaptosuccinic acid. Formation of a complex of QD-antibody and QD-antibody-antigen was verified by using capillary electrophoresis with laser-induced fluorescence detection. QDs and antibody were connected together via an affinity peptide linker. LA-ICP-MS was employed as a proof-of-concept for detection method of two types of immunoassay: 1) antigen extracted from the sample by MIP and subsequently overlaid/immunoreacted by QD-labelled antibodies, 2) complex of antigen, antibody, and QD formed in the sample and subsequently extracted by MIP. The first approach provided higher sensitivity (MIP/NIP), however, the second demonstrated higher selectivity. A mixture of proteins with size in range 10-250 kDa was used as a model sample to demonstrate the capability of both approaches for detection of IgG in a complex sample.
Department of Chemistry Masaryk University Kamenice 753 5 CZ 625 00 Brno Czech Republic
NenoVision s r o Purkynova 649 127 CZ 612 00 Brno Czech Republic
See more in PubMed
Vlatakis G, Andersson LI, Muller R, Mosbach K. Drug assay using antibody mimics made by molecular imprinting. Nature. 1993;361:645–647. doi: 10.1038/361645a0. PubMed DOI
Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates - a way towards artificial antibodies. Angew. Chem.-Int. Edit. Engl. 1995;34:1812–1832. doi: 10.1002/anie.199518121. DOI
Baggiani C, Anfossi L, Giovannoli C. Solid phase extraction of food contaminants using molecular imprinted polymers. Anal. Chim. Acta. 2007;591:29–39. doi: 10.1016/j.aca.2007.01.056. PubMed DOI
Ramstrom O, Skudar K, Haines J, Patel P, Bruggemann O. Food analyses using molecularly imprinted polymers. J. Agric. Food Chem. 2001;49:2105–2114. doi: 10.1021/jf001444h. PubMed DOI
Manesiotis P, Borrelli C, Aureliano CSA, Svensson C, Sellergren B. Water-compatible imprinted polymers for selective depletion of riboflavine from beverages. J. Mater. Chem. 2009;19:6185–6193. doi: 10.1039/b906117g. DOI
Zhu QF, Ma C, Chen HX, Wu YQ, Huang JL. A molecular imprint-coated stirrer bar for selective extraction of caffeine, theobromine and theophylline. Microchim. Acta. 2014;181:303–311. doi: 10.1007/s00604-013-1117-1. DOI
Watabe Y, et al. LC/MS determination of bisphenol A in river water using a surface-modified molecularly-imprinted polymer as an on-line pretreatment device. Analytical and Bioanalytical Chemistry. 2005;381:1193–1198. doi: 10.1007/s00216-004-3031-1. PubMed DOI
Peng Y, et al. Molecularly imprinted polymer layer-coated silica nanoparticles toward dispersive solid-phase extraction of trace sulfonylurea herbicides from soil and crop samples. Anal. Chim. Acta. 2010;674:190–200. doi: 10.1016/j.aca.2010.06.022. PubMed DOI
Vaneckova T, et al. Molecularly imprinted polymers coupled to mass spectrometric detection for metallothionein sensing. Talanta. 2019;198:224–229. doi: 10.1016/j.talanta.2019.01.089. PubMed DOI
Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 2000;100:2495–2504. doi: 10.1021/cr990099w. PubMed DOI
Emir Diltemiz Sibel, Keçili Rüstem, Ersöz Arzu, Say Rıdvan. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors. Sensors. 2017;17(3):454. doi: 10.3390/s17030454. PubMed DOI PMC
Shepherd RE. Chromatographic and related electrophoretic methods in the separation of transition metal complexes or their ligands. Coord. Chem. Rev. 2003;247:147–184. doi: 10.1016/s0010-8545(03)00125-5. DOI
Lynge ME, van der Westen R, Postma A, Stadler B. Polydopamine-a nature-inspired polymer coating for biomedical science. Nanoscale. 2011;3:4916–4928. doi: 10.1039/c1nr10969c. PubMed DOI
Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–430. doi: 10.1126/science.1147241. PubMed DOI PMC
Liu R, Sha M, Jiang SS, Luo J, Liu XY. A facile approach for imprinting protein on the surface of multi-walled carbon nanotubes. Talanta. 2014;120:76–83. doi: 10.1016/j.talanta.2013.12.002. PubMed DOI
Ryu JH, Messersmith PB, Lee H. Polydopamine Surface Chemistry: A Decade of Discovery. ACS Appl. Mater. Interfaces. 2018;10:7523–7540. doi: 10.1021/acsami.7b19865. PubMed DOI PMC
Jia XP, et al. Polydopamine-based molecular imprinting on silica-modified magnetic nanoparticles for recognition and separation of bovine hemoglobin. Analyst. 2013;138:651–658. doi: 10.1039/c2an36313e. PubMed DOI
Xia ZW, et al. Facile synthesis of polydopamine-coated molecularly imprinted silica nanoparticles for protein recognition and separation. Biosens. Bioelectron. 2013;47:120–126. doi: 10.1016/j.bios.2013.03.024. PubMed DOI
Zhang M, Zhang XH, He XW, Chen LX, Zhang YK. A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein. Nanoscale. 2012;4:3141–3147. doi: 10.1039/c2nr30316g. PubMed DOI
Lin ZA, et al. Preparation of boronate-functionalized molecularly imprinted monolithic column with polydopamine coating for glycoprotein recognition and enrichment. J. Chromatogr. A. 2013;1319:141–147. doi: 10.1016/j.chroma.2013.10.059. PubMed DOI
Yin YL, Yan L, Zhang ZH, Wang J. Magnetic molecularly imprinted polydopamine nanolayer on multiwalled carbon nanotubes surface for protein capture. Talanta. 2015;144:671–679. doi: 10.1016/j.talanta.2015.06.067. PubMed DOI
Klos-Witkowska A. The phenomenon of fluorescence in immunosensors. Acta Biochim. Pol. 2016;63:215–221. doi: 10.18388/abp.2015_1231. PubMed DOI
Fu XL, Chen LX, Choo J. Optical Nanoprobes for Ultrasensitive Immunoassay. Analytical Chemistry. 2017;89:124–137. doi: 10.1021/acs.analchem.6b02251. PubMed DOI
Fan AP, Cao ZJ, Li HA, Kai M, Lu JZ. Chemiluminescence Platforms in Immunoassay and DNA Analyses. Anal. Sci. 2009;25:587–597. doi: 10.2116/analsci.25.587. PubMed DOI
Hasanzadeh M, Shadjou N, Soleymani J, Omidinia E, de la Guardia M. Optical immunosensing of effective cardiac biomarkers on acute myocardial infarction. Trac-Trends Anal. Chem. 2013;51:158–168. doi: 10.1016/j.trac.2013.06.010. DOI
Wei XF, et al. Multiplexed Instrument-Free Bar-Chart SpinChip Integrated with Nanoparticle-Mediated Magnetic Aptasensors for Visual Quantitative Detection of Multiple Pathogens. Analytical Chemistry. 2018;90:9888–9896. doi: 10.1021/acs.analchem.8b02055. PubMed DOI PMC
Sanjay, S. T., Dou, M. W., Sun, J. J. & Li, X. J. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers. Scientific Reports6, 30474 10.1038/srep30474 (2016). PubMed PMC
Fu GL, Sanjay ST, Li XJ. Cost-effective and sensitive colorimetric immunosensing using an iron oxide-to-Prussian blue nanoparticle conversion strategy. Analyst. 2016;141:3883–3889. doi: 10.1039/c6an00254d. PubMed DOI PMC
Fu GL, Sanjay ST, Dou MW, Li XJ. Nanoparticle-mediated photothermal effect enables a new method for quantitative biochemical analysis using a thermometer. Nanoscale. 2016;8:5422–5427. doi: 10.1039/c5nr09051b. PubMed DOI PMC
Buchner T, et al. Biomolecular environment, quantification, and intracellular interaction of multifunctional magnetic SERS nanoprobes. Analyst. 2016;141:5096–5106. doi: 10.1039/c6an00890a. PubMed DOI PMC
Janu L, et al. Electrophoretic study of peptide-mediated quantum dot-human immunoglobulin bioconjugation. Electrophoresis. 2013;34:2725–2732. doi: 10.1002/elps.201300088. PubMed DOI
Bilici Mustafa, Zengin Adem, Ekmen Elvan, Cetin Demet, Aktas Nahit. Efficient and selective separation of metronidazole from human serum by using molecularly imprinted magnetic nanoparticles. Journal of Separation Science. 2018;41(14):2952–2960. doi: 10.1002/jssc.201800428. PubMed DOI
Chen GN, et al. Preparation of molecularly imprinted polymers and application in a biomimetic biotin-avidin-ELISA for the detection of bovine serum albumin. Talanta. 2019;198:55–62. doi: 10.1016/j.talanta.2019.01.088. PubMed DOI
Lai YX, et al. Molecular Imprinting Polymers Electrochemical Sensor Based on AuNPs/PTh Modified GCE for Highly Sensitive Detection of Carcinomaembryonic Antigen. J. Biomed. Nanotechnol. 2018;14:1688–1694. doi: 10.1166/jbn.2018.2617. PubMed DOI
Li YX, Jiang CY. Trypsin electrochemical sensing using two-dimensional molecularly imprinted polymers on 96-well microplates. Biosens. Bioelectron. 2018;119:18–24. doi: 10.1016/j.bios.2018.07.067. PubMed DOI
Babamiri B, Salimi A, Hallaj R. A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore. Biosens. Bioelectron. 2018;117:332–339. doi: 10.1016/j.bios.2018.06.003. PubMed DOI
Ge SG, Lu JJ, Ge L, Yan M, Yu JH. Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy. 2011;79:1704–1709. doi: 10.1016/j.saa.2011.05.040. PubMed DOI
Jia MF, et al. A molecular imprinting fluorescence sensor based on quantum dots and a mesoporous structure for selective and sensitive detection of 2,4-dichlorophenoxyacetic acid. Sensors and Actuators B-Chemical. 2017;252:934–943. doi: 10.1016/j.snb.2017.06.090. DOI
Li JH, et al. Thermosensitive molecularly imprinted core-shell CdTe quantum dots as a ratiometric fluorescence nanosensor for phycocyanin recognition and detection in seawater. Analyst. 2018;143:3570–3578. doi: 10.1039/c8an00811f. PubMed DOI
Liu YX, Liu L, He YH, He QH, Ma H. Quantum-dots-encoded-microbeads based molecularly imprinted polymer. Biosens. Bioelectron. 2016;77:886–893. doi: 10.1016/j.bios.2015.10.024. PubMed DOI
Wang XY, et al. Quantum dots based imprinting fluorescent nanosensor for the selective and sensitive detection of phycocyanin: A general imprinting strategy toward proteins. Sensors and Actuators B-Chemical. 2018;255:268–274. doi: 10.1016/j.snb.2017.08.068. DOI
Xu SF, et al. Dummy Molecularly Imprinted Polymers-Capped CdTe Quantum Dots for the Fluorescent Sensing of 2,4,6-Trinitrotoluene. ACS Appl. Mater. Interfaces. 2013;5:8146–8154. doi: 10.1021/am4022076. PubMed DOI
Yu JL, et al. One-pot synthesis of a quantum dot-based molecular imprinting nanosensor for highly selective and sensitive fluorescence detection of 4-nitrophenol in environmental waters. Environmental Science-Nano. 2017;4:493–502. doi: 10.1039/c6en00395h. DOI
Zhang Z, Li JH, Wang XY, Shen DZ, Chen LX. Quantum Dots Based Mesoporous Structured Imprinting Microspheres for the Sensitive Fluorescent Detection of Phycocyanin. ACS Appl. Mater. Interfaces. 2015;7:9118–9127. doi: 10.1021/acsami.5b00908. PubMed DOI
Tang YW, et al. A NIR-responsive up-conversion nanoparticle probe of the NaYF4: Er,Yb type and coated with a molecularly imprinted polymer for fluorometric determination of enrofloxacin. Microchim. Acta. 2017;184:3469–3475. doi: 10.1007/s00604-017-2387-9. DOI
Wang Y, et al. A label-free detection of diethylstilbestrol based on molecularly imprinted polymer-coated upconversion nanoparticles obtained by surface grafting. RSC Adv. 2017;7:22215–22221. doi: 10.1039/c6ra26999k. DOI
Nejdl L, et al. Rapid preparation of self-assembled CdTe quantum dots used for sensing of DNA in urine. New J. Chem. 2018;42:6005–6012. doi: 10.1039/c7nj05167k. DOI
http://www.nenovision.com/.
Zhang J, Men YW, Lv SS, Yi L, Chen JF. Protein tetrazinylation via diazonium coupling for covalent and catalyst-free bioconjugation. Org. Biomol. Chem. 2015;13:11422–11425. doi: 10.1039/c5ob02053k. PubMed DOI
Zhou WH, et al. Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition. J. Mater. Chem. 2010;20:880–883. doi: 10.1039/b916619j. DOI