• This record comes from PubMed

CdS quantum dots-based immunoassay combined with particle imprinted polymer technology and laser ablation ICP-MS as a versatile tool for protein detection

. 2019 Aug 14 ; 9 (1) : 11840. [epub] 20190814

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 31413275
PubMed Central PMC6694198
DOI 10.1038/s41598-019-48290-2
PII: 10.1038/s41598-019-48290-2
Knihovny.cz E-resources

For the first time, the combination of molecularly imprinted polymer (MIP) technology with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is presented with focus on an optimization of the LA-ICP-MS parameters such as laser beam diameter, laser beam fluence, and scan speed using CdS quantum dots (QDs) as a template and dopamine as a functional monomer. A non-covalent imprinting approach was employed in this study due to the simplicity of preparation. Simple oxidative polymerization of the dopamine that creates the self-assembly monolayer seems to be an ideal choice. The QDs prepared by UV light irradiation synthesis were stabilized by using mercaptosuccinic acid. Formation of a complex of QD-antibody and QD-antibody-antigen was verified by using capillary electrophoresis with laser-induced fluorescence detection. QDs and antibody were connected together via an affinity peptide linker. LA-ICP-MS was employed as a proof-of-concept for detection method of two types of immunoassay: 1) antigen extracted from the sample by MIP and subsequently overlaid/immunoreacted by QD-labelled antibodies, 2) complex of antigen, antibody, and QD formed in the sample and subsequently extracted by MIP. The first approach provided higher sensitivity (MIP/NIP), however, the second demonstrated higher selectivity. A mixture of proteins with size in range 10-250 kDa was used as a model sample to demonstrate the capability of both approaches for detection of IgG in a complex sample.

See more in PubMed

Vlatakis G, Andersson LI, Muller R, Mosbach K. Drug assay using antibody mimics made by molecular imprinting. Nature. 1993;361:645–647. doi: 10.1038/361645a0. PubMed DOI

Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates - a way towards artificial antibodies. Angew. Chem.-Int. Edit. Engl. 1995;34:1812–1832. doi: 10.1002/anie.199518121. DOI

Baggiani C, Anfossi L, Giovannoli C. Solid phase extraction of food contaminants using molecular imprinted polymers. Anal. Chim. Acta. 2007;591:29–39. doi: 10.1016/j.aca.2007.01.056. PubMed DOI

Ramstrom O, Skudar K, Haines J, Patel P, Bruggemann O. Food analyses using molecularly imprinted polymers. J. Agric. Food Chem. 2001;49:2105–2114. doi: 10.1021/jf001444h. PubMed DOI

Manesiotis P, Borrelli C, Aureliano CSA, Svensson C, Sellergren B. Water-compatible imprinted polymers for selective depletion of riboflavine from beverages. J. Mater. Chem. 2009;19:6185–6193. doi: 10.1039/b906117g. DOI

Zhu QF, Ma C, Chen HX, Wu YQ, Huang JL. A molecular imprint-coated stirrer bar for selective extraction of caffeine, theobromine and theophylline. Microchim. Acta. 2014;181:303–311. doi: 10.1007/s00604-013-1117-1. DOI

Watabe Y, et al. LC/MS determination of bisphenol A in river water using a surface-modified molecularly-imprinted polymer as an on-line pretreatment device. Analytical and Bioanalytical Chemistry. 2005;381:1193–1198. doi: 10.1007/s00216-004-3031-1. PubMed DOI

Peng Y, et al. Molecularly imprinted polymer layer-coated silica nanoparticles toward dispersive solid-phase extraction of trace sulfonylurea herbicides from soil and crop samples. Anal. Chim. Acta. 2010;674:190–200. doi: 10.1016/j.aca.2010.06.022. PubMed DOI

Vaneckova T, et al. Molecularly imprinted polymers coupled to mass spectrometric detection for metallothionein sensing. Talanta. 2019;198:224–229. doi: 10.1016/j.talanta.2019.01.089. PubMed DOI

Haupt K, Mosbach K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 2000;100:2495–2504. doi: 10.1021/cr990099w. PubMed DOI

Emir Diltemiz Sibel, Keçili Rüstem, Ersöz Arzu, Say Rıdvan. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors. Sensors. 2017;17(3):454. doi: 10.3390/s17030454. PubMed DOI PMC

Shepherd RE. Chromatographic and related electrophoretic methods in the separation of transition metal complexes or their ligands. Coord. Chem. Rev. 2003;247:147–184. doi: 10.1016/s0010-8545(03)00125-5. DOI

Lynge ME, van der Westen R, Postma A, Stadler B. Polydopamine-a nature-inspired polymer coating for biomedical science. Nanoscale. 2011;3:4916–4928. doi: 10.1039/c1nr10969c. PubMed DOI

Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–430. doi: 10.1126/science.1147241. PubMed DOI PMC

Liu R, Sha M, Jiang SS, Luo J, Liu XY. A facile approach for imprinting protein on the surface of multi-walled carbon nanotubes. Talanta. 2014;120:76–83. doi: 10.1016/j.talanta.2013.12.002. PubMed DOI

Ryu JH, Messersmith PB, Lee H. Polydopamine Surface Chemistry: A Decade of Discovery. ACS Appl. Mater. Interfaces. 2018;10:7523–7540. doi: 10.1021/acsami.7b19865. PubMed DOI PMC

Jia XP, et al. Polydopamine-based molecular imprinting on silica-modified magnetic nanoparticles for recognition and separation of bovine hemoglobin. Analyst. 2013;138:651–658. doi: 10.1039/c2an36313e. PubMed DOI

Xia ZW, et al. Facile synthesis of polydopamine-coated molecularly imprinted silica nanoparticles for protein recognition and separation. Biosens. Bioelectron. 2013;47:120–126. doi: 10.1016/j.bios.2013.03.024. PubMed DOI

Zhang M, Zhang XH, He XW, Chen LX, Zhang YK. A self-assembled polydopamine film on the surface of magnetic nanoparticles for specific capture of protein. Nanoscale. 2012;4:3141–3147. doi: 10.1039/c2nr30316g. PubMed DOI

Lin ZA, et al. Preparation of boronate-functionalized molecularly imprinted monolithic column with polydopamine coating for glycoprotein recognition and enrichment. J. Chromatogr. A. 2013;1319:141–147. doi: 10.1016/j.chroma.2013.10.059. PubMed DOI

Yin YL, Yan L, Zhang ZH, Wang J. Magnetic molecularly imprinted polydopamine nanolayer on multiwalled carbon nanotubes surface for protein capture. Talanta. 2015;144:671–679. doi: 10.1016/j.talanta.2015.06.067. PubMed DOI

Klos-Witkowska A. The phenomenon of fluorescence in immunosensors. Acta Biochim. Pol. 2016;63:215–221. doi: 10.18388/abp.2015_1231. PubMed DOI

Fu XL, Chen LX, Choo J. Optical Nanoprobes for Ultrasensitive Immunoassay. Analytical Chemistry. 2017;89:124–137. doi: 10.1021/acs.analchem.6b02251. PubMed DOI

Fan AP, Cao ZJ, Li HA, Kai M, Lu JZ. Chemiluminescence Platforms in Immunoassay and DNA Analyses. Anal. Sci. 2009;25:587–597. doi: 10.2116/analsci.25.587. PubMed DOI

Hasanzadeh M, Shadjou N, Soleymani J, Omidinia E, de la Guardia M. Optical immunosensing of effective cardiac biomarkers on acute myocardial infarction. Trac-Trends Anal. Chem. 2013;51:158–168. doi: 10.1016/j.trac.2013.06.010. DOI

Wei XF, et al. Multiplexed Instrument-Free Bar-Chart SpinChip Integrated with Nanoparticle-Mediated Magnetic Aptasensors for Visual Quantitative Detection of Multiple Pathogens. Analytical Chemistry. 2018;90:9888–9896. doi: 10.1021/acs.analchem.8b02055. PubMed DOI PMC

Sanjay, S. T., Dou, M. W., Sun, J. J. & Li, X. J. A paper/polymer hybrid microfluidic microplate for rapid quantitative detection of multiple disease biomarkers. Scientific Reports6, 30474 10.1038/srep30474 (2016). PubMed PMC

Fu GL, Sanjay ST, Li XJ. Cost-effective and sensitive colorimetric immunosensing using an iron oxide-to-Prussian blue nanoparticle conversion strategy. Analyst. 2016;141:3883–3889. doi: 10.1039/c6an00254d. PubMed DOI PMC

Fu GL, Sanjay ST, Dou MW, Li XJ. Nanoparticle-mediated photothermal effect enables a new method for quantitative biochemical analysis using a thermometer. Nanoscale. 2016;8:5422–5427. doi: 10.1039/c5nr09051b. PubMed DOI PMC

Buchner T, et al. Biomolecular environment, quantification, and intracellular interaction of multifunctional magnetic SERS nanoprobes. Analyst. 2016;141:5096–5106. doi: 10.1039/c6an00890a. PubMed DOI PMC

Janu L, et al. Electrophoretic study of peptide-mediated quantum dot-human immunoglobulin bioconjugation. Electrophoresis. 2013;34:2725–2732. doi: 10.1002/elps.201300088. PubMed DOI

Bilici Mustafa, Zengin Adem, Ekmen Elvan, Cetin Demet, Aktas Nahit. Efficient and selective separation of metronidazole from human serum by using molecularly imprinted magnetic nanoparticles. Journal of Separation Science. 2018;41(14):2952–2960. doi: 10.1002/jssc.201800428. PubMed DOI

Chen GN, et al. Preparation of molecularly imprinted polymers and application in a biomimetic biotin-avidin-ELISA for the detection of bovine serum albumin. Talanta. 2019;198:55–62. doi: 10.1016/j.talanta.2019.01.088. PubMed DOI

Lai YX, et al. Molecular Imprinting Polymers Electrochemical Sensor Based on AuNPs/PTh Modified GCE for Highly Sensitive Detection of Carcinomaembryonic Antigen. J. Biomed. Nanotechnol. 2018;14:1688–1694. doi: 10.1166/jbn.2018.2617. PubMed DOI

Li YX, Jiang CY. Trypsin electrochemical sensing using two-dimensional molecularly imprinted polymers on 96-well microplates. Biosens. Bioelectron. 2018;119:18–24. doi: 10.1016/j.bios.2018.07.067. PubMed DOI

Babamiri B, Salimi A, Hallaj R. A molecularly imprinted electrochemiluminescence sensor for ultrasensitive HIV-1 gene detection using EuS nanocrystals as luminophore. Biosens. Bioelectron. 2018;117:332–339. doi: 10.1016/j.bios.2018.06.003. PubMed DOI

Ge SG, Lu JJ, Ge L, Yan M, Yu JH. Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy. 2011;79:1704–1709. doi: 10.1016/j.saa.2011.05.040. PubMed DOI

Jia MF, et al. A molecular imprinting fluorescence sensor based on quantum dots and a mesoporous structure for selective and sensitive detection of 2,4-dichlorophenoxyacetic acid. Sensors and Actuators B-Chemical. 2017;252:934–943. doi: 10.1016/j.snb.2017.06.090. DOI

Li JH, et al. Thermosensitive molecularly imprinted core-shell CdTe quantum dots as a ratiometric fluorescence nanosensor for phycocyanin recognition and detection in seawater. Analyst. 2018;143:3570–3578. doi: 10.1039/c8an00811f. PubMed DOI

Liu YX, Liu L, He YH, He QH, Ma H. Quantum-dots-encoded-microbeads based molecularly imprinted polymer. Biosens. Bioelectron. 2016;77:886–893. doi: 10.1016/j.bios.2015.10.024. PubMed DOI

Wang XY, et al. Quantum dots based imprinting fluorescent nanosensor for the selective and sensitive detection of phycocyanin: A general imprinting strategy toward proteins. Sensors and Actuators B-Chemical. 2018;255:268–274. doi: 10.1016/j.snb.2017.08.068. DOI

Xu SF, et al. Dummy Molecularly Imprinted Polymers-Capped CdTe Quantum Dots for the Fluorescent Sensing of 2,4,6-Trinitrotoluene. ACS Appl. Mater. Interfaces. 2013;5:8146–8154. doi: 10.1021/am4022076. PubMed DOI

Yu JL, et al. One-pot synthesis of a quantum dot-based molecular imprinting nanosensor for highly selective and sensitive fluorescence detection of 4-nitrophenol in environmental waters. Environmental Science-Nano. 2017;4:493–502. doi: 10.1039/c6en00395h. DOI

Zhang Z, Li JH, Wang XY, Shen DZ, Chen LX. Quantum Dots Based Mesoporous Structured Imprinting Microspheres for the Sensitive Fluorescent Detection of Phycocyanin. ACS Appl. Mater. Interfaces. 2015;7:9118–9127. doi: 10.1021/acsami.5b00908. PubMed DOI

Tang YW, et al. A NIR-responsive up-conversion nanoparticle probe of the NaYF4: Er,Yb type and coated with a molecularly imprinted polymer for fluorometric determination of enrofloxacin. Microchim. Acta. 2017;184:3469–3475. doi: 10.1007/s00604-017-2387-9. DOI

Wang Y, et al. A label-free detection of diethylstilbestrol based on molecularly imprinted polymer-coated upconversion nanoparticles obtained by surface grafting. RSC Adv. 2017;7:22215–22221. doi: 10.1039/c6ra26999k. DOI

Nejdl L, et al. Rapid preparation of self-assembled CdTe quantum dots used for sensing of DNA in urine. New J. Chem. 2018;42:6005–6012. doi: 10.1039/c7nj05167k. DOI

http://www.nenovision.com/.

Zhang J, Men YW, Lv SS, Yi L, Chen JF. Protein tetrazinylation via diazonium coupling for covalent and catalyst-free bioconjugation. Org. Biomol. Chem. 2015;13:11422–11425. doi: 10.1039/c5ob02053k. PubMed DOI

Zhou WH, et al. Mussel-inspired molecularly imprinted polymer coating superparamagnetic nanoparticles for protein recognition. J. Mater. Chem. 2010;20:880–883. doi: 10.1039/b916619j. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...