The configuration of Northern Hemisphere ice sheets through the Quaternary
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31420542
PubMed Central
PMC6697730
DOI
10.1038/s41467-019-11601-2
PII: 10.1038/s41467-019-11601-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Our understanding of how global climatic changes are translated into ice-sheet fluctuations and sea-level change is currently limited by a lack of knowledge of the configuration of ice sheets prior to the Last Glacial Maximum (LGM). Here, we compile a synthesis of empirical data and numerical modelling results related to pre-LGM ice sheets to produce new hypotheses regarding their extent in the Northern Hemisphere (NH) at 17 time-slices that span the Quaternary. Our reconstructions illustrate pronounced ice-sheet asymmetry within the last glacial cycle and significant variations in ice-marginal positions between older glacial cycles. We find support for a significant reduction in the extent of the Laurentide Ice Sheet (LIS) during MIS 3, implying that global sea levels may have been 30-40 m higher than most previous estimates. Our ice-sheet reconstructions illustrate the current state-of-the-art knowledge of pre-LGM ice sheets and provide a conceptual framework to interpret NH landscape evolution.
Department of Geography Durham University DH1 3LE Durham UK
Department of Geography University of Cambridge Scott Polar Research Institute CB2 1ER Cambridge UK
Department of Geography University of Sussex BN1 9RH Brighton UK
Department of Physical Geography and Geoecology Charles University 128 43 Prague Czech Republic
Department of Zoology University of Cambridge CB2 3EJ Cambridge UK
Zobrazit více v PubMed
Lisiecki LE, Raymo ME. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanogr. Paleoclimatology. 2005;20:PA1003.
DeConto RM, Pollard D. Contribution of Antarctica to past and future sea-level rise. Nature. 2016;531:591–597. doi: 10.1038/nature17145. PubMed DOI
Whipple KX, Kirby E, Brocklehurst SH. Geomorphic limits to climate-induced increases in topographic relief. Nature. 1999;401:39–43. doi: 10.1038/43375. DOI
Willerslev E, et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature. 2014;506:47–51. doi: 10.1038/nature12921. PubMed DOI
Shapiro B, et al. Rise and fall of the Beringian Steppe Bison. Science. 2004;306:1561–1565. doi: 10.1126/science.1101074. PubMed DOI
Lorenzen ED, et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature. 2011;479:359–364. doi: 10.1038/nature10574. PubMed DOI PMC
Stokes CR, et al. On the reconstruction of palaeo-ice sheets: recent advances and future challenges. Quat. Sci. Rev. 2015;125:15–49. doi: 10.1016/j.quascirev.2015.07.016. DOI
Dyke, A. S., Moore, A. & Robertson, L. Deglaciation of North America, Scale 1:7000000. Geological Survey of Canada, Open File 157410.4095/214399 (2003).
Hughes PD, Gibbard PL, Ehlers J. Timing of glaciation during the last glacial cycle: evaluating the concept of a global ‘Last Glacial Maximum’ (LGM) Earth Sci. Rev. 2013;125:171–198. doi: 10.1016/j.earscirev.2013.07.003. DOI
Bentley MJ, et al. A community-based reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 2014;100:1–9. doi: 10.1016/j.quascirev.2014.06.025. DOI
Hughes ALC, Gyllencreutz R, Lohne ØS, Mangerud J, Svendsen JI. The last Eurasian ice sheets–a chronological database and time-slice reconstruction, DATED-1. Boreas. 2016;45:1–45. doi: 10.1111/bor.12142. DOI
Clark CD, et al. BRITICE Glacial Map, version 2: a map and GIS database of glacial landforms of the last British–Irish Ice Sheet. Boreas. 2018;47:11–27. doi: 10.1111/bor.12273. DOI
Clark PU, et al. The Last Glacial Maximum. Science. 2009;325:710–714. doi: 10.1126/science.1172873. PubMed DOI
Ehlers, J., Gibbard, P. L. & Hughes, P. D. (eds). Quaternary Glaciation Extent and Chronology: a Closer Look. Developments in Quaternary Science 15 (Elsevier, Amsterdam, 2011).
Hughes PD, Gibbard PL. Global glacier dynamics during 100 ka Pleistocene glacial cycles. Quat. Res. 2018;90:222–243. doi: 10.1017/qua.2018.37. DOI
Kleman J, et al. North American ice sheet build-up during the last glacial cycle, 115-21 kyr. Quat. Sci. Rev. 2010;29:2036–2051. doi: 10.1016/j.quascirev.2010.04.021. DOI
Ganopolski A, Calov R, Claussen M. Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity. Clim. Past. 2010;6:229–244. doi: 10.5194/cp-6-229-2010. DOI
Stokes CR, Tarasov L, Dyke AS. Dynamics of the North American Ice Sheet complex during its inception and build-up to the Last Glacial Maximum. Quat. Sci. Rev. 2012;50:86–104. doi: 10.1016/j.quascirev.2012.07.009. DOI
De Boer B, Stocchi P, van de Wal RSW. A fully coupled 3-D ice-sheet–sea-level model: algorithm and applications. Geosci. Model Dev. 2014;7:2141–2156. doi: 10.5194/gmd-7-2141-2014. DOI
Colleoni F, Wekerle C, Näslund J-O, Brandefelt J, Masina J. Constraint on the penultimate glacial maximum Northern Hemisphere ice topography (= 140 kyrs BP) Quat. Sci. Rev. 2016;137:97–112. doi: 10.1016/j.quascirev.2016.01.024. DOI
Stap LB, van de Wal RSW, de Boer B, Bintanja R, Lourens LJ. The influence of ice sheets on temperature during the past 38 million years inferred from a one-dimensional ice sheet-climate model. Clim. Past. 2017;13:1243–1257. doi: 10.5194/cp-13-1243-2017. DOI
Railsback LB, Gibbard PL, Head MJ, Voarintsoa NRG, Toucanne S. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quat. Sci. Rev. 2015;111:94–106. doi: 10.1016/j.quascirev.2015.01.012. DOI
De Schepper S, Gibbard PL, Salzmann U, Ehlers J. A global synthesis of the marine and terrestrial evidence for glaciation during the Pliocene Epoch. Earth Sci. Rev. 2014;135:83–102. doi: 10.1016/j.earscirev.2014.04.003. DOI
Andriashek LD, Barendregt RW. Evidence for Early Pleistocene glaciation from borecore stratigraphy in north-central Alberta, Canada. Can. J. Earth Sci. 2017;54:445–460. doi: 10.1139/cjes-2016-0175. DOI
Joyce JE, Tjalsma LRC, Prutzman JM. North American glacial meltwater history for the past 2.3My: oxygen isotope evidence from the Gulf of Mexico. Geology. 1993;21:483–486. doi: 10.1130/0091-7613(1993)021<0483:NAGMHF>2.3.CO;2. DOI
Balco G, Rovey CW., II Absolute chronology for major Pleistocene advances of the Laurentide Ice Sheet. Geology. 2010;38:795–798. doi: 10.1130/G30946.1. DOI
Haug GH, et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature. 2005;433:821–825. doi: 10.1038/nature03332. PubMed DOI
Bailey I, et al. An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice-rafted debris. Quat. Sci. Rev. 2013;75:181–194. doi: 10.1016/j.quascirev.2013.06.004. DOI
Laberg JS, Forwick M, Husum K, Nielsen T. A re-evaluation of the Pleistocene behaviour of the Scoresby Sund sector of the Greenland Ice Sheet. Geology. 2013;41:1231–1234. doi: 10.1130/G34784.1. DOI
Glushkova, O. Y. Late Pleistocene Glaciations in North-East Asia. In Quaternary Glaciation Extent and Chronology: A Closer Look (eds Ehlers, J., Gibbard, P. L. & Hughes, P. D.) Developments in Quaternary Science15, 865–875 (Elsevier, Amsterdam, 2011).
Barr ID, Clark CD. Late Quaternary glaciations in Far NE Russia; combining moraines, topography and chronology to assess regional and global glaciation synchrony. Quat. Sci. Rev. 2012;53:72–87. doi: 10.1016/j.quascirev.2012.08.004. DOI
Svendsen JI, et al. Late Quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev. 2004;23:1229–1271. doi: 10.1016/j.quascirev.2003.12.008. DOI
Liakka J, Löfverström M, Colleoni F. The impact of the North American glacial topography on the evolution of the Eurasian ice sheet over the last glacial cycle. Clim. Past. 2016;12:1225–1241. doi: 10.5194/cp-12-1225-2016. DOI
Rohling EJ, et al. Differences between the last two glacial maxima and implications for ice-sheet, δ18O, and sea-level reconstructions. Quat. Sci. Rev. 2017;176:1–28. doi: 10.1016/j.quascirev.2017.09.009. DOI
Duk-Rodkin, A. & Barendregt, R. W. The Glacial History of Northwestern Canada. In Quaternary Glaciation Extent and Chronology: A Closer Look (eds Ehlers, J., Gibbard, P. L. & Hughes, P. D.) Developments in Quaternary Science15, 661–698 (Elsevier, Amsterdam, 2011).
Patton H, et al. Deglaciation of the Eurasian ice sheet complex. Quat. Sci. Rev. 2017;169:148–172. doi: 10.1016/j.quascirev.2017.05.019. DOI
Oppenheimer M. Global warming and the stability of the West Antarctic Ice Sheet. Nature. 1998;393:325–332. doi: 10.1038/30661. DOI
Spratt RM, Lisiecki LE. A Late Pleistocene sea level stack. Clim. Past. 2016;12:1079–1092. doi: 10.5194/cp-12-1079-2016. DOI
Simms AR, Lisiecki L, Gebbie G, Whitehouse PL, Clark JF. Balancing the last glacial maximum (LGM) sea-level budget. Quat. Sci. Rev. 2019;205:143–153. doi: 10.1016/j.quascirev.2018.12.018. DOI
Pico T, Mitrovica JX, Ferrier KL, Braun J. Global ice volume during MIS 3 inferred from a sea-level analysis of sedimentary core records in the Yellow River Delta. Quat. Sci. Rev. 2016;152:72–79. doi: 10.1016/j.quascirev.2016.09.012. DOI
Dalton AS, et al. Was the Laurentide Ice Sheet significantly reduced during Marine Isotope Stage 3? Geology. 2019;47:111–114. doi: 10.1130/G45335.1. DOI
Marshall SJ, James TS, Clark GKC. North American Ice Sheet reconstructions at the Last Glacial Maximum. Quat. Sci. Rev. 2002;21:175–192. doi: 10.1016/S0277-3791(01)00089-0. DOI
Steer P, Huismans RS, Valla PG, Gac S, Herman F. Bimodal Plio-Quaternary glacial erosion of fjords and low-relief surfaces in Scandinavia. Nat. Geosci. 2012;5:635–639. doi: 10.1038/ngeo1549. DOI
Egholm DL, et al. Formation of plateau landscapes on glaciated continental margins. Nat. Geosci. 2017;10:592–597. doi: 10.1038/ngeo2980. DOI
Clark PU, Pollard D. Origin of the middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography. 1998;13:1–9. doi: 10.1029/97PA02660. DOI
Chalk TB, et al. Causes of ice age intensification across the Mid-Pleistocene Transition. Proc. Natl Acad. Sci. U.S.A. 2017;114:13114–13119. doi: 10.1073/pnas.1702143114. PubMed DOI PMC
Astakhov VI, Kaplyanskaya FA, Tarnogradsky VD. Pleistocene permafrost of West Siberia as a deformable glacier bed. Permafr. Periglac. 1996;7:165–191. doi: 10.1002/(SICI)1099-1530(199604)7:2<165::AID-PPP218>3.0.CO;2-S. DOI
Vorren TO, Laberg JS. Trough mouth fans—palaeoclimate and ice-sheet monitors. Quat. Sci. Rev. 1997;16:865–881. doi: 10.1016/S0277-3791(97)00003-6. DOI
Batchelor CL, Dowdeswell JA. The physiography of High Arctic cross-shelf troughs. Quat. Sci. Rev. 2014;92:68–96. doi: 10.1016/j.quascirev.2013.05.025. DOI
Mangerud J, Astakhov V, Jakobsson M, Svendsen JI. Huge ice-age lakes in Russia. J. Quat. Sci. 2001;16:773–777. doi: 10.1002/jqs.661. DOI
Teller JT, Leverington DW. Glacial Lake Agassiz: A 5000 yr history of change and its relationship to the δ18O record of Greenland. GSA Bull. 2004;116:729–742. doi: 10.1130/B25316.1. DOI
Wickert AD. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum. Earth Surf. Dynam. 2016;4:831–869. doi: 10.5194/esurf-4-831-2016. DOI
Waltari E, et al. Locating pleistocene refugia: comparing phylogeographic and ecological niche model predictions. PLoS ONE. 2007;2:e563. doi: 10.1371/journal.pone.0000563. PubMed DOI PMC
Schiffels S, Durbin R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 2014;46:919–925. doi: 10.1038/ng.3015. PubMed DOI PMC
Knies J, et al. The Plio-Pleistocene glaciation of the Barents Sea-Svalbard region: a new model based on revised chronostratigraphy. Quat. Sci. Rev. 2009;28:812–829. doi: 10.1016/j.quascirev.2008.12.002. DOI
Lundqvist, J., Ehlers, J. & Gibbard, P. L. Glacial history of Sweden. In Quaternary Glaciations—Extent and Chronology: Part I: Europe (eds Ehlers, J. & Gibbard, P. L.) Developments in Quaternary Science2, 401–412 (Elsevier, Amsterdam, 2004).
Larsen E, et al. Late Pleistocene glacial and lake history of northwestern Russia. Boreas. 2006;35:394–424. doi: 10.1080/03009480600781958. DOI
Mangerud, J., Gyllencreutz, R., Lohne, O. & Svendsen, J. I. Glacial History of Norway. In Quaternary Glaciations—Extent and Chronology: A Closer Look (eds Ehlers, J., Gibbard, P. L. & Hughes, P. D.) Developments in Quaternary Science15, 279–298 (Elsevier, Amsterdam, 2011).
Jakobsson M, et al. Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation. Nat. Commun. 2016;7:10365. doi: 10.1038/ncomms10365. PubMed DOI PMC
Pierce KL. Pleistocene glaciations of the Rocky Mountains. Developments in Quaternary Science. 2003;1:63–76. doi: 10.1016/S1571-0866(03)01004-2. DOI
Buoncristiani, J-F. & Campy, M. Quaternary Glaciations in the French Alps and Jura. In Quaternary Glaciations – Extent and Chronology: A Closer Look (eds Ehlers, J., Gibbard, P. L. & Hughes, P. D.) Developments in Quaternary Science15, 117–126 (Elsevier, Amsterdam, 2011).
Owen LA, Dortch JM. Nature and timing of Quaternary glaciation in the Himalayan-Tibetan orogen. Quat. Sci. Rev. 2014;88:14–54. doi: 10.1016/j.quascirev.2013.11.016. DOI
Funder S, et al. Late Pliocene Greenland—the Kap København Formation in North Greenland. Bull. Geol. Soc. Den. 2001;48:117–134.
Bennike O, et al. Early Pleistocene sediments on Store Koldewey, northeast Greenland. Boreas. 2010;39:603–619.
Kaufman, D. S., Young, N. E., Briner, J. P. & Manley, M. F. Alaska Palaeo-Glacier Atlas (Version 2) In Quaternary Glaciation—Extent and Chronology: A Closer Look (eds Ehlers, J., Gibbard, P. L. & Hughes, P. D.) Developments in Quaternary Science 15, 427–445 (Elsevier, Amsterdam, 2011).
Turner DG, et al. Stratigraphy of Pleistocene glaciations in the St Elias Mountains, southwest Yukon, Canada. Boreas. 2016;45:521–536. doi: 10.1111/bor.12172. DOI
Seguinot J, Rogozhina I, Stroeven AP, Margold M, Kleman J. Numerical simulations of the Cordilleran ice sheet through the last glacial cycle. Cryosphere. 2016;10:639–664. doi: 10.5194/tc-10-639-2016. DOI
Dowdeswell JA, Ottesen D, Rise L. Rates of sediment delivery from the Fennoscandian Ice Sheet through an ice age. Geology. 2010;38:3–6. doi: 10.1130/G25523.1. DOI
Cuffey, K. M. & Paterson, W. S. B. The Physics of Glaciers 4th edn, 693pp. (Academic Press, Amsterdam, 2010).
Zweck C, Huybrechts P. Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. J. Geophys. Res. 2005;110:D07103. doi: 10.1029/2004JD005489. DOI
Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. PNAS. 2014;111:15296–15303. doi: 10.1073/pnas.1411762111. PubMed DOI PMC
Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24 (National Geophysical Data Center, NOAA, Pangaea, 2009).