Temporal Ordering in Endocytic Clathrin-Coated Vesicle Formation via AP2 Phosphorylation
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
090909/Z/09/Z
Wellcome Trust - United Kingdom
207455/Z/17/Z
Wellcome Trust - United Kingdom
MC_U105178845
Medical Research Council - United Kingdom
Wellcome Trust - United Kingdom
MC_U105178934
Medical Research Council - United Kingdom
097040/Z/11/Z
Wellcome Trust - United Kingdom
PubMed
31430451
PubMed Central
PMC6706699
DOI
10.1016/j.devcel.2019.07.017
PII: S1534-5807(19)30623-9
Knihovny.cz E-zdroje
- Klíčová slova
- AAK1, AP2 endocytic adaptor, NECAP, NMR, Numb-associated kinases (NAK), SNX9, TIRF, clathrin-mediated endocytosis, crystallography, regulation by phosphorylation,
- MeSH
- adaptorový proteinový komplex - alfa-podjednotky genetika MeSH
- adaptorový proteinový komplex 2 genetika metabolismus MeSH
- endocytóza genetika MeSH
- fosforylace genetika MeSH
- klathrin genetika metabolismus MeSH
- klathrinové vezikuly genetika metabolismus MeSH
- lidé MeSH
- potažené jamky v buněčné membráně genetika metabolismus MeSH
- třídící nexiny genetika MeSH
- vazba proteinů genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adaptorový proteinový komplex - alfa-podjednotky MeSH
- adaptorový proteinový komplex 2 MeSH
- klathrin MeSH
- NECAP1 protein, human MeSH Prohlížeč
- SNX9 protein, human MeSH Prohlížeč
- třídící nexiny MeSH
Clathrin-mediated endocytosis (CME) is key to maintaining the transmembrane protein composition of cells' limiting membranes. During mammalian CME, a reversible phosphorylation event occurs on Thr156 of the μ2 subunit of the main endocytic clathrin adaptor, AP2. We show that this phosphorylation event starts during clathrin-coated pit (CCP) initiation and increases throughout CCP lifetime. μ2Thr156 phosphorylation favors a new, cargo-bound conformation of AP2 and simultaneously creates a binding platform for the endocytic NECAP proteins but without significantly altering AP2's cargo affinity in vitro. We describe the structural bases of both. NECAP arrival at CCPs parallels that of clathrin and increases with μ2Thr156 phosphorylation. In turn, NECAP recruits drivers of late stages of CCP formation, including SNX9, via a site distinct from where NECAP binds AP2. Disruption of the different modules of this phosphorylation-based temporal regulatory system results in CCP maturation being delayed and/or stalled, hence impairing global rates of CME.
Center for Molecular Medicine University of Cologne Robert Koch Straße 21 50931 Cologne Germany
CIMR WT MRC Building Hills Road Cambridge CB2 0QQ UK
The Francis Crick Institute 1 Midland Road London NW1 1ST UK
University of Grenoble Alpes CNRS CEA IBS 38000 Grenoble France
Zobrazit více v PubMed
Aguet F., Antonescu C.N., Mettlen M., Schmid S.L., Danuser G. Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint. Dev. Cell. 2013;26:279–291. PubMed PMC
Alazami A.M., Hijazi H., Kentab A.Y., Alkuraya F.S. NECAP1 loss of function leads to a severe infantile epileptic encephalopathy. J. Med. Genet. 2014;51:224–228. PubMed
Antonny B., Burd C., De Camilli P., Chen E., Daumke O., Faelber K., Ford M., Frolov V.A., Frost A., Hinshaw J.E. Membrane fission by dynamin: what we know and what we need to know. EMBO J. 2016;35:2270–2284. PubMed PMC
Ashkenazy H., Erez E., Martz E., Pupko T., Ben-Tal N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res. 2010;38:W529–W533. PubMed PMC
Bamborough P., Drewry D., Harper G., Smith G.K., Schneider K. Assessment of chemical coverage of kinome space and its implications for kinase drug discovery. J. Med. Chem. 2008;51:7898–7914. PubMed
Beacham G.M., Partlow E.A., Lange J.J., Hollopeter G. NECAPs are negative regulators of the AP2 clathrin adaptor complex. ELife. 2018;7 PubMed PMC
Borner G.H., Antrobus R., Hirst J., Bhumbra G.S., Kozik P., Jackson L.P., Sahlender D.A., Robinson M.S. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles. J. Cell Biol. 2012;197:141–160. PubMed PMC
Borner G.H., Fielding A.B. Isolating HeLa cell fractions enriched for clathrin-coated vesicles. Cold Spring Harb. Protoc. 2014;2014:1184–1187. PubMed
Case D.A., Cheatham T.E., 3rd, Darden T., Gohlke H., Luo R., Merz K.M., Jr., Onufriev A., Simmerling C., Wang B., Woods R.J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005;26:1668–1688. PubMed PMC
Collins B.M., McCoy A.J., Kent H.M., Evans P.R., Owen D.J. Molecular architecture and functional model of the endocytic AP2 complex. Cell. 2002;109:523–535. PubMed
Conner S.D., Schmid S.L. Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. J. Cell Biol. 2002;156:921–929. PubMed PMC
Cousin M.A., Robinson P.J. The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis. Trends Neurosci. 2001;24:659–665. PubMed
Guerry P., Duong V.D., Herrmann T. CASD-NMR 2: Robust and accurate unsupervised analysis of raw NOESY spectra and protein structure determination with UNIO. J. Biomol. NMR. 2015;62:473–480. PubMed
Güntert P., Mumenthaler C., Wüthrich K. Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 1997;273:283–298. PubMed
He K., Marsland R., III, Upadhyayula S., Song E., Dang S., Capraro B.R., Wang W., Skillern W., Gaudin R., Ma M. Dynamics of phosphoinositide conversion in clathrin-mediated endocytic traffic. Nature. 2017;552:410–414. PubMed PMC
Herrmann T., Güntert P., Wüthrich K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 2002;319:209–227. PubMed
Herrmann T., Güntert P., Wüthrich K. Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR. 2002;24:171–189. PubMed
Heuser J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol. 1980;84:560–583. PubMed PMC
Hollopeter G., Lange J.J., Zhang Y., Vu T.N., Gu M., Ailion M., Lambie E.J., Slaughter B.D., Unruh J.R., Florens L. The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex. ELife. 2014;3 PubMed PMC
Höning S., Ricotta D., Krauss M., Späte K., Spolaore B., Motley A., Robinson M., Robinson C., Haucke V., Owen D.J. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell. 2005;18:519–531. PubMed
Itzhak D.N., Tyanova S., Cox J., Borner G.H. Global, quantitative and dynamic mapping of protein subcellular localization. ELife. 2016;5 PubMed PMC
Jackson A.P., Flett A., Smythe C., Hufton L., Wettey F.R., Smythe E. Clathrin promotes incorporation of cargo into coated pits by activation of the AP2 adaptor micro2 kinase. J. Cell Biol. 2003;163:231–236. PubMed PMC
Jackson L.P., Kelly B.T., McCoy A.J., Gaffry T., James L.C., Collins B.M., Höning S., Evans P.R., Owen D.J. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell. 2010;141:1220–1229. PubMed PMC
Kadlecova Z., Spielman S.J., Loerke D., Mohanakrishnan A., Reed D.K., Schmid S.L. Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2. J. Cell Biol. 2017;216:167–179. PubMed PMC
Kelly B.T., Graham S.C., Liska N., Dannhauser P.N., Höning S., Ungewickell E.J., Owen D.J. Clathrin adaptors. AP2 controls clathrin polymerization with a membrane-activated switch. Science. 2014;345:459–463. PubMed PMC
Kelly B.T., McCoy A.J., Späte K., Miller S.E., Evans P.R., Höning S., Owen D.J. A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature. 2008;456:976–979. PubMed PMC
Kirchhausen T., Owen D., Harrison S.C. Molecular Structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb. Perspect. Biol. 2014;6:a016725. PubMed PMC
Kostich W., Hamman B.D., Li Y.W., Naidu S., Dandapani K., Feng J., Easton A., Bourin C., Baker K., Allen J. Inhibition of AAK1 kinase as a novel therapeutic approach to treat neuropathic pain. J. Pharmacol. Exp. Ther. 2016;358:371–386. PubMed PMC
Kukulski W., Schorb M., Kaksonen M., Briggs J.A. Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography. Cell. 2012;150:508–520. PubMed
Lampe M., Vassilopoulos S., Merrifield C. Clathrin coated pits, plaques and adhesion. J. Struct. Biol. 2016;196:48–56. PubMed
Lo W.T., Vujičić Žagar A., Gerth F., Lehmann M., Puchkov D., Krylova O., Freund C., Scapozza L., Vadas O., Haucke V. A coincidence detection mechanism controls PX-BAR domain-mediated endocytic membrane remodeling via an allosteric structural switch. Dev. Cell. 2017;529:522–529.e4. PubMed
Loerke D., Mettlen M., Schmid S.L., Danuser G. Measuring the hierarchy of molecular events during clathrin-mediated endocytosis. Traffic. 2011;12:815–825. PubMed PMC
Ma L., Umasankar P.K., Wrobel A.G., Lymar A., McCoy A.J., Holkar S.S., Jha A., Pradhan-Sundd T., Watkins S.C., Owen D.J. Transient Fcho1/2Eps15/RAP-2 nanoclusters prime the AP-2 clathrin adaptor for cargo binding. Dev. Cell. 2016;37:428–443. PubMed PMC
McCoy A.J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D Biol. Crystallogr. 2007;63:32–41. PubMed PMC
Mettlen M., Chen P.H., Srinivasan S., Danuser G., Schmid S.L. Regulation of clathrin-mediated endocytosis. Annu. Rev. Biochem. 2018;87:871–896. PubMed PMC
Miele A.E., Watson P.J., Evans P.R., Traub L.M., Owen D.J. Two distinct interaction motifs in amphiphysin bind two independent sites on the clathrin terminal domain beta-propeller. Nat. Struct. Mol. Biol. 2004;11:242–248. PubMed
Miller S.E., Mathiasen S., Bright N.A., Pierre F., Kelly B.T., Kladt N., Schauss A., Merrifield C.J., Stamou D., Höning S. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev. Cell. 2015;33:163–175. PubMed PMC
Nishi H., Hashimoto K., Panchenko A.R. Phosphorylation in protein-protein binding: effect on stability and function. Structure. 2011;19:1807–1815. PubMed PMC
Olusanya O., Andrews P.D., Swedlow J.R., Smythe E. Phosphorylation of threonine 156 of the mu2 subunit of the AP2 complex is essential for endocytosis in vitro and in vivo. Curr. Biol. 2001;11:896–900. PubMed
Owen D.J., Evans P.R. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science. 1998;282:1327–1332. PubMed PMC
Owen D.J., Wigge P., Vallis Y., Moore J.D., Evans P.R., McMahon H.T. Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. EMBO J. 1998;17:5273–5285. PubMed PMC
Pauloin A., Bernier I., eJollès P. Presence of cyclic nucleotide-Ca2+ independent protein kinase in bovine brain coated vesicles. Nature. 1982;298:574–576. PubMed
Pauloin A., Thurieau C. The 50 kDa protein subunit of assembly polypeptide (AP) AP-2 adaptor from clathrin-coated vesicles is phosphorylated on threonine-156 by AP-1 and a soluble AP50 kinase which co-purifies with the assembly polypeptides. Biochem. J. 1993;296:409–415. PubMed PMC
Praefcke G.J., Ford M.G., Schmid E.M., Olesen L.E., Gallop J.L., Peak-Chew S.Y., Vallis Y., Babu M.M., Mills I.G., McMahon H.T. Evolving nature of the AP2 alpha-appendage hub during clathrin-coated vesicle endocytosis. EMBO J. 2004;23:4371–4383. PubMed PMC
Ricotta D., Conner S.D., Schmid S.L., von Figura K., Honing S. Phosphorylation of the AP2 mu subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J. Cell Biol. 2002;156:791–795. PubMed PMC
Ritter B., Denisov A.Y., Philie J., Allaire P.D., Legendre-Guillemin V., Zylbergold P., Gehring K., McPherson P.S. The NECAP PHear domain increases clathrin accessory protein binding potential. EMBO J. 2007;26:4066–4077. PubMed PMC
Ritter B., Murphy S., Dokainish H., Girard M., Gudheti M.V., Kozlov G., Halin M., Philie J., Jorgensen E.M., Gehring K. NECAP 1 regulates AP-2 interactions to control vesicle size, number, and cargo during clathrin-mediated endocytosis. PLoS Biol. 2013;11:e1001670. PubMed PMC
Schwieters C.D., Kuszewski J.J., Tjandra N., Clore G.M. The XPLOR-NIH NMR molecular structure determination package. J. Magn. Reson. 2003;160:65–73. PubMed
Smythe E., Ayscough K.R. The Ark1/Prk1 family of protein kinases. Regulators of endocytosis and the actin skeleton. EMBO Rep. 2003;4:246–251. PubMed PMC
Sorrell F.J., Szklarz M., Abdul Azeez K.R., Elkins J.M., Knapp S. Family-wide structural analysis of human Numb-associated protein kinases. Structure. 2016;24:401–411. PubMed PMC
Taylor M.J., Perrais D., Merrifield C.J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 2011;9:e1000604. PubMed PMC
Wilde A., Brodsky F.M. In vivo phosphorylation of adaptors regulates their interaction with clathrin. J. Cell Biol. 1996;135:635–645. PubMed PMC
Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G., McCoy A. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011;67:235–242. PubMed PMC
Vranken W.F., Boucher W., Stevens T.J., Fogh R.H., Pajon A., Llinas M., Ulrich E.L., Markley J.L., Ionides J., Laue E.D. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins. 2005;59:687–696. PubMed
Zaritsky A., Obolski U., Gan Z., Reis C.R., Kadlecova Z., Du Y., Schmid S.L., Danuser G. Decoupling global biases and local interactions between cell biological variables. ELife. 2017;6 PubMed PMC