Caenorhabditis elegans SEL-5/AAK1 regulates cell migration and cell outgrowth independently of its kinase activity
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P40 OD010440
NIH HHS - United States
16-17966Y
Grantová Agentura České Republiky
Lumina quaeruntur grant LQ200522301
Akademie Věd České Republiky
1446218/2018
Grantová Agentura, Univerzita Karlova
PubMed
39028260
PubMed Central
PMC11333045
DOI
10.7554/elife.91054
PII: 91054
Knihovny.cz E-zdroje
- Klíčová slova
- C. elegans, DPY-23/AP2M1, SEL-5/AAK1, Wnt signalling, cell biology, developmental biology, excretory cell, retromer,
- MeSH
- Caenorhabditis elegans * genetika metabolismus MeSH
- frizzled receptory metabolismus genetika MeSH
- pohyb buněk * MeSH
- proteiny Caenorhabditis elegans * metabolismus genetika MeSH
- proteiny Wnt metabolismus genetika MeSH
- signální dráha Wnt * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- CWN-1 protein, C elegans MeSH Prohlížeč
- CWN-2 protein, C elegans MeSH Prohlížeč
- Egl-20 protein, C elegans MeSH Prohlížeč
- frizzled receptory MeSH
- proteiny Caenorhabditis elegans * MeSH
- proteiny Wnt MeSH
During Caenorhabditis elegans development, multiple cells migrate long distances or extend processes to reach their final position and/or attain proper shape. The Wnt signalling pathway stands out as one of the major coordinators of cell migration or cell outgrowth along the anterior-posterior body axis. The outcome of Wnt signalling is fine-tuned by various mechanisms including endocytosis. In this study, we show that SEL-5, the C. elegans orthologue of mammalian AP2-associated kinase AAK1, acts together with the retromer complex as a positive regulator of EGL-20/Wnt signalling during the migration of QL neuroblast daughter cells. At the same time, SEL-5 in cooperation with the retromer complex is also required during excretory canal cell outgrowth. Importantly, SEL-5 kinase activity is not required for its role in neuronal migration or excretory cell outgrowth, and neither of these processes is dependent on DPY-23/AP2M1 phosphorylation. We further establish that the Wnt proteins CWN-1 and CWN-2, together with the Frizzled receptor CFZ-2, positively regulate excretory cell outgrowth, while LIN-44/Wnt and LIN-17/Frizzled together generate a stop signal inhibiting its extension.
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
Institute of Molecular Genetics Czech Academy of Sciences Prague Czech Republic
doi: 10.1101/2023.03.29.534638 PubMed
Zobrazit více v PubMed
Ackley BD. Wnt-signaling and planar cell polarity genes regulate axon guidance along the anteroposterior axis in C. elegans. Developmental Neurobiology. 2014;74:781–796. doi: 10.1002/dneu.22146. PubMed DOI PMC
Agajanian MJ, Walker MP, Axtman AD, Ruela-de-Sousa RR, Serafin DS, Rabinowitz AD, Graham DM, Ryan MB, Tamir T, Nakamichi Y, Gammons MV, Bennett JM, Couñago RM, Drewry DH, Elkins JM, Gileadi C, Gileadi O, Godoi PH, Kapadia N, Müller S, Santiago AS, Sorrell FJ, Wells CI, Fedorov O, Willson TM, Zuercher WJ, Major MB. WNT activates the AAK1 kinase to promote clathrin-mediated endocytosis of LRP6 and establish a negative feedback loop. Cell Reports. 2019;26:79–93. doi: 10.1016/j.celrep.2018.12.023. PubMed DOI PMC
Albrecht LV, Tejeda-Muñoz N, De Robertis EM. Cell biology of canonical wnt signaling. Annual Review of Cell and Developmental Biology. 2021;37:369–389. doi: 10.1146/annurev-cellbio-120319-023657. PubMed DOI
Aspöck G, Kagoshima H, Niklaus G, Bürglin TR. Caenorhabditis elegans has scores of hedgehog-related genes: sequence and expression analysis. Genome Research. 1999;9:909–923. doi: 10.1101/gr.9.10.909. PubMed DOI
Bänziger C, Soldini D, Schütt C, Zipperlen P, Hausmann G, Basler K. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell. 2006;125:509–522. doi: 10.1016/j.cell.2006.02.049. PubMed DOI
Bartscherer K, Pelte N, Ingelfinger D, Boutros M. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell. 2006;125:523–533. doi: 10.1016/j.cell.2006.04.009. PubMed DOI
Belenkaya TY, Wu Y, Tang X, Zhou B, Cheng L, Sharma YV, Yan D, Selva EM, Lin X. The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Developmental Cell. 2008;14:120–131. doi: 10.1016/j.devcel.2007.12.003. PubMed DOI
Bhat JM, Pan J, Hutter H. PLR-1, a putative E3 ubiquitin ligase, controls cell polarity and axonal extensions in C. elegans. Developmental Biology. 2015;398:44–56. doi: 10.1016/j.ydbio.2014.11.008. PubMed DOI
Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94. doi: 10.1093/genetics/77.1.71. PubMed DOI PMC
Buechner M, Hall DH, Bhatt H, Hedgecock EM. Cystic canal mutants in Caenorhabditis elegans are defective in the apical membrane domain of the renal (excretory) cell. Developmental Biology. 1999;214:227–241. doi: 10.1006/dbio.1999.9398. PubMed DOI
Cendrowski J, Kaczmarek M, Mazur M, Kuzmicz-Kowalska K, Jastrzebski K, Brewinska-Olchowik M, Kominek A, Piwocka K, Miaczynska M. Splicing variation of BMP2K balances abundance of COPII assemblies and autophagic degradation in erythroid cells. eLife. 2020;9:e58504. doi: 10.7554/eLife.58504. PubMed DOI PMC
Ch’ng Q, Williams L, Lie YS, Sym M, Whangbo J, Kenyon C. Identification of genes that regulate a left-right asymmetric neuronal migration in Caenorhabditis elegans. Genetics. 2003;164:1355–1367. doi: 10.1093/genetics/164.4.1355. PubMed DOI PMC
Cho NH, Cheveralls KC, Brunner AD, Kim K, Michaelis AC, Raghavan P, Kobayashi H, Savy L, Li JY, Canaj H, Kim JYS, Stewart EM, Gnann C, McCarthy F, Cabrera JP, Brunetti RM, Chhun BB, Dingle G, Hein MY, Huang B, Mehta SB, Weissman JS, Gómez-Sjöberg R, Itzhak DN, Royer LA, Mann M, Leonetti MD. OpenCell: Endogenous tagging for the cartography of human cellular organization. Science. 2022;375:eabi6983. doi: 10.1126/science.abi6983. PubMed DOI PMC
Colozza G, Koo BK. Ub and Dub of RNF43/ZNRF3 in the WNT signalling pathway. EMBO Reports. 2021;22:e52970. doi: 10.15252/embr.202152970. PubMed DOI PMC
Conner SD, Schmid SL. Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. The Journal of Cell Biology. 2002;156:921–929. doi: 10.1083/jcb.200108123. PubMed DOI PMC
Conner SD, Schmid SL. Differential requirements for AP-2 in clathrin-mediated endocytosis. The Journal of Cell Biology. 2003;162:773–779. doi: 10.1083/jcb.200304069. PubMed DOI PMC
Coudreuse DYM, Roël G, Betist MC, Destrée O, Korswagen HC. Wnt gradient formation requires retromer function in Wnt-producing cells. Science. 2006;312:921–924. doi: 10.1126/science.1124856. PubMed DOI
Dickinson DJ, Ward JD, Reiner DJ, Goldstein B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nature Methods. 2013;10:1028–1034. doi: 10.1038/nmeth.2641. PubMed DOI PMC
Dickinson DJ, Pani AM, Heppert JK, Higgins CD, Goldstein B. Streamlined genome engineering with a self-excising drug selection cassette. Genetics. 2015;200:1035–1049. doi: 10.1534/genetics.115.178335. PubMed DOI PMC
Fares H, Greenwald I. SEL-5, a serine/threonine kinase that facilitates lin-12 activity in Caenorhabditis elegans. Genetics. 1999;153:1641–1654. doi: 10.1093/genetics/153.4.1641. PubMed DOI PMC
Franch-Marro X, Wendler F, Guidato S, Griffith J, Baena-Lopez A, Itasaki N, Maurice MM, Vincent JP. Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex. Nature Cell Biology. 2008;10:170–177. doi: 10.1038/ncb1678. PubMed DOI PMC
Frøkjaer-Jensen C, Davis MW, Hopkins CE, Newman BJ, Thummel JM, Olesen S-P, Grunnet M, Jorgensen EM. Single-copy insertion of transgenes in Caenorhabditis elegans. Nature Genetics. 2008;40:1375–1383. doi: 10.1038/ng.248. PubMed DOI PMC
Fujita M, Hawkinson D, King KV, Hall DH, Sakamoto H, Buechner M. The role of the ELAV homologue EXC-7 in the development of the Caenorhabditis elegans excretory canals. Developmental Biology. 2003;256:290–301. doi: 10.1016/s0012-1606(03)00040-x. PubMed DOI
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods. 2009;6:343–345. doi: 10.1038/nmeth.1318. PubMed DOI
Golkowski M, Lius A, Sapre T, Lau HT, Moreno T, Maly DJ, Ong SE. Multiplexed kinase interactome profiling quantifies cellular network activity and plasticity. Molecular Cell. 2023;83:803–818. doi: 10.1016/j.molcel.2023.01.015. PubMed DOI PMC
Goodman RM, Thombre S, Firtina Z, Gray D, Betts D, Roebuck J, Spana EP, Selva EM. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development. 2006;133:4901–4911. doi: 10.1242/dev.02674. PubMed DOI
Groenendyk J, Michalak M. A genome-wide siRNA screen identifies novel phospho-enzymes affecting Wnt/β-catenin signaling in mouse embryonic stem cells. Stem Cell Reviews and Reports. 2011;7:910–926. doi: 10.1007/s12015-011-9265-3. PubMed DOI
Gupta-Rossi N, Ortica S, Meas-Yedid V, Heuss S, Moretti J, Olivo-Marin JC, Israël A. The adaptor-associated kinase 1, AAK1, is a positive regulator of the Notch pathway. The Journal of Biological Chemistry. 2011;286:18720–18730. doi: 10.1074/jbc.M110.190769. PubMed DOI PMC
Harfe BD, Branda CS, Krause M, Stern MJ, Fire A. MyoD and the specification of muscle and non-muscle fates during postembryonic development of the C. elegans mesoderm. Development. 1998;125:2479–2488. doi: 10.1242/dev.125.13.2479. PubMed DOI
Harris J, Honigberg L, Robinson N, Kenyon C. Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position. Development. 1996;122:3117–3131. doi: 10.1242/dev.122.10.3117. PubMed DOI
Harterink M, Kim DH, Middelkoop TC, Doan TD, van Oudenaarden A, Korswagen HC. Neuroblast migration along the anteroposterior axis of C. elegans is controlled by opposing gradients of Wnts and a secreted Frizzled-related protein. Development. 2011a;138:2915–2924. doi: 10.1242/dev.064733. PubMed DOI PMC
Harterink M, Port F, Lorenowicz MJ, McGough IJ, Silhankova M, Betist MC, van Weering JRT, van Heesbeen RGHP, Middelkoop TC, Basler K, Cullen PJ, Korswagen HC. A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nature Cell Biology. 2011b;13:914–923. doi: 10.1038/ncb2281. PubMed DOI PMC
Hedgecock EM, Culotti JG, Hall DH, Stern BD. Genetics of cell and axon migrations in Caenorhabditis elegans. Development. 1987;100:365–382. doi: 10.1242/dev.100.3.365. PubMed DOI
Heppert JK, Pani AM, Roberts AM, Dickinson DJ, Goldstein B. A CRISPR tagging-based screen reveals localized players in Wnt-directed asymmetric cell division. Genetics. 2018;208:1147–1164. doi: 10.1534/genetics.117.300487. PubMed DOI PMC
Herman MA, Horvitz HR. The Caenorhabditis elegans gene lin-44 controls the polarity of asymmetric cell divisions. Development. 1994;120:1035–1047. doi: 10.1242/dev.120.5.1035. PubMed DOI
Herman MA, Vassilieva LL, Horvitz HR, Shaw JE, Herman RK. The C. elegans gene lin-44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously. Cell. 1995;83:101–110. doi: 10.1016/0092-8674(95)90238-4. PubMed DOI
Hilliard MA, Bargmann CI. Wnt signals and frizzled activity orient anterior-posterior axon outgrowth in C. elegans. Developmental Cell. 2006;10:379–390. doi: 10.1016/j.devcel.2006.01.013. PubMed DOI
Hollopeter G, Lange JJ, Zhang Y, Vu TN, Gu M, Ailion M, Lambie EJ, Slaughter BD, Unruh JR, Florens L, Jorgensen EM. The membrane-associated proteins FCHo and SGIP are allosteric activators of the AP2 clathrin adaptor complex. eLife. 2014;3:e03648. doi: 10.7554/eLife.03648. PubMed DOI PMC
Hutter H. Formation of longitudinal axon pathways in Caenorhabditis elegans. Seminars in Cell & Developmental Biology. 2019;85:60–70. doi: 10.1016/j.semcdb.2017.11.015. PubMed DOI
Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, Colby G, Gebreab F, Gygi MP, Parzen H, Szpyt J, Tam S, Zarraga G, Pontano-Vaites L, Swarup S, White AE, Schweppe DK, Rad R, Erickson BK, Obar RA, Guruharsha KG, Li K, Artavanis-Tsakonas S, Gygi SP, Harper JW. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545:505–509. doi: 10.1038/nature22366. PubMed DOI PMC
Huttlin EL, Bruckner RJ, Navarrete-Perea J, Cannon JR, Baltier K, Gebreab F, Gygi MP, Thornock A, Zarraga G, Tam S, Szpyt J, Gassaway BM, Panov A, Parzen H, Fu S, Golbazi A, Maenpaa E, Stricker K, Guha Thakurta S, Zhang T, Rad R, Pan J, Nusinow DP, Paulo JA, Schweppe DK, Vaites LP, Harper JW, Gygi SP. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell. 2021;184:3022–3040. doi: 10.1016/j.cell.2021.04.011. PubMed DOI PMC
Jullien-Flores V, Mahé Y, Mirey G, Leprince C, Meunier-Bisceuil B, Sorkin A, Camonis JH. RLIP76, an effector of the GTPase Ral, interacts with the AP2 complex: involvement of the Ral pathway in receptor endocytosis. Journal of Cell Science. 2000;113 (Pt 16):2837–2844. doi: 10.1242/jcs.113.16.2837. PubMed DOI
Kadlecova Z, Spielman SJ, Loerke D, Mohanakrishnan A, Reed DK, Schmid SL. Regulation of clathrin-mediated endocytosis by hierarchical allosteric activation of AP2. The Journal of Cell Biology. 2017;216:167–179. doi: 10.1083/jcb.201608071. PubMed DOI PMC
Kamath RS, Ahringer J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods. 2003;30:313–321. doi: 10.1016/s1046-2023(03)00050-1. PubMed DOI
Krause M, Fire A, Harrison SW, Priess J, Weintraub H. CeMyoD accumulation defines the body wall muscle cell fate during C. elegans embryogenesis. Cell. 1990;63:907–919. doi: 10.1016/0092-8674(90)90494-y. PubMed DOI
Liégeois S, Benedetto A, Michaux G, Belliard G, Labouesse M. Genes required for osmoregulation and apical secretion in Caenorhabditis elegans. Genetics. 2007;175:709–724. doi: 10.1534/genetics.106.066035. PubMed DOI PMC
Lorenowicz MJ, Macurkova M, Harterink M, Middelkoop TC, de Groot R, Betist MC, Korswagen HC. Inhibition of late endosomal maturation restores Wnt secretion in Caenorhabditis elegans vps-29 retromer mutants. Cellular Signalling. 2014;26:19–31. doi: 10.1016/j.cellsig.2013.09.013. PubMed DOI
Maloof JN, Whangbo J, Harris JM, Jongeward GD, Kenyon C. A Wnt signaling pathway controls hox gene expression and neuroblast migration in C. elegans. Development. 1999;126:37–49. doi: 10.1242/dev.126.1.37. PubMed DOI
Maro GS, Klassen MP, Shen K. A beta-catenin-dependent Wnt pathway mediates anteroposterior axon guidance in C. elegans motor neurons. PLOS ONE. 2009;4:e4690. doi: 10.1371/journal.pone.0004690. PubMed DOI PMC
Martinez-Gualda B, Graus M, Camps A, Vanhulle E, Saul S, Azari S, Nhu Tran DH, Vangeel L, Chiu W, Neyts J, Schols D, Einav S, Vermeire K, De Jonghe S. Synthesis and evaluation of 3-alkynyl-5-aryl-7-aza-indoles as broad-spectrum antiviral agents. Frontiers in Chemistry. 2022;10:1058229. doi: 10.3389/fchem.2022.1058229. PubMed DOI PMC
McKay SJ, Johnsen R, Khattra J, Asano J, Baillie DL, Chan S, Dube N, Fang L, Goszczynski B, Ha E, Halfnight E, Hollebakken R, Huang P, Hung K, Jensen V, Jones SJM, Kai H, Li D, Mah A, Marra M, McGhee J, Newbury R, Pouzyrev A, Riddle DL, Sonnhammer E, Tian H, Tu D, Tyson JR, Vatcher G, Warner A, Wong K, Zhao Z, Moerman DG. Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harbor Symposia on Quantitative Biology. 2003;68:159–169. doi: 10.1101/sqb.2003.68.159. PubMed DOI
Middelkoop TC, Williams L, Yang PT, Luchtenberg J, Betist MC, Ji N, van Oudenaarden A, Kenyon C, Korswagen HC. The thrombospondin repeat containing protein MIG-21 controls a left-right asymmetric Wnt signaling response in migrating C. elegans neuroblasts. Developmental Biology. 2012;361:338–348. doi: 10.1016/j.ydbio.2011.10.029. PubMed DOI
Middelkoop TC, Korswagen HC. In: WormBook. Middelkoop TC, editor. WormBook; 2014. Development and migration of the C. elegans Q neuroblasts and their descendants; pp. 1–23. PubMed DOI PMC
Moffat LL, Robinson RE, Bakoulis A, Clark SG. The conserved transmembrane RING finger protein PLR-1 downregulates Wnt signaling by reducing Frizzled, Ror and Ryk cell-surface levels in C. elegans. Development. 2014;141:617–628. doi: 10.1242/dev.101600. PubMed DOI PMC
Moreno-Layseca P, Icha J, Hamidi H, Ivaska J. Integrin trafficking in cells and tissues. Nature Cell Biology. 2019;21:122–132. doi: 10.1038/s41556-018-0223-z. PubMed DOI PMC
Motley AM, Berg N, Taylor MJ, Sahlender DA, Hirst J, Owen DJ, Robinson MS. Functional analysis of AP-2 alpha and mu2 subunits. Molecular Biology of the Cell. 2006;17:5298–5308. doi: 10.1091/mbc.e06-05-0452. PubMed DOI PMC
Oosterveen T, Coudreuse DYM, Yang PT, Fraser E, Bergsma J, Dale TC, Korswagen HC. Two functionally distinct Axin-like proteins regulate canonical Wnt signaling in C. elegans. Developmental Biology. 2007;308:438–448. doi: 10.1016/j.ydbio.2007.05.043. PubMed DOI
Pan CL, Howell JE, Clark SG, Hilliard M, Cordes S, Bargmann CI, Garriga G. Multiple Wnts and frizzled receptors regulate anteriorly directed cell and growth cone migrations in Caenorhabditis elegans. Developmental Cell. 2006;10:367–377. doi: 10.1016/j.devcel.2006.02.010. PubMed DOI
Pan CL, Baum PD, Gu M, Jorgensen EM, Clark SG, Garriga G. C. elegans AP-2 and retromer control Wnt signaling by regulating mig-14/Wntless. Developmental Cell. 2008;14:132–139. doi: 10.1016/j.devcel.2007.12.001. PubMed DOI PMC
Pani AM, Goldstein B. Direct visualization of a native Wnt in vivo reveals that a long-range Wnt gradient forms by extracellular dispersal. eLife. 2018;7:e38325. doi: 10.7554/eLife.38325. PubMed DOI PMC
Partlow EA, Baker RW, Beacham GM, Chappie JS, Leschziner AE, Hollopeter G. A structural mechanism for phosphorylation-dependent inactivation of the AP2 complex. eLife. 2019;8:e50003. doi: 10.7554/eLife.50003. PubMed DOI PMC
Peng YH, Yang WK, Lin WH, Lai TT, Chien CT. Nak regulates Dlg basal localization in Drosophila salivary gland cells. Biochemical and Biophysical Research Communications. 2009;382:108–113. doi: 10.1016/j.bbrc.2009.02.139. PubMed DOI
Port F, Kuster M, Herr P, Furger E, Bänziger C, Hausmann G, Basler K. Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nature Cell Biology. 2008;10:178–185. doi: 10.1038/ncb1687. PubMed DOI
Prasad BC, Clark SG. Wnt signaling establishes anteroposterior neuronal polarity and requires retromer in C. elegans. Development. 2006;133:1757–1766. doi: 10.1242/dev.02357. PubMed DOI
Ramesh ST, Navyasree KV, Sah S, Ashok AB, Qathoon N, Mohanty S, Swain RK, Umasankar PK. BMP2K phosphorylates AP-2 and regulates clathrin-mediated endocytosis. Traffic. 2021;22:377–396. doi: 10.1111/tra.12814. PubMed DOI
Rella L, Fernandes Póvoa EE, Korswagen HC. The Caenorhabditis elegans Q neuroblasts: A powerful system to study cell migration at single-cell resolution in vivo. Genesis. 2016;54:198–211. doi: 10.1002/dvg.22931. PubMed DOI
Ricotta D, Conner SD, Schmid SL, von Figura K, Honing S. Phosphorylation of the AP2 mu subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. The Journal of Cell Biology. 2002;156:791–795. doi: 10.1083/jcb.200111068. PubMed DOI PMC
Rual J-F, Ceron J, Koreth J, Hao T, Nicot A-S, Hirozane-Kishikawa T, Vandenhaute J, Orkin SH, Hill DE, van den Heuvel S, Vidal M. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Research. 2004;14:2162–2168. doi: 10.1101/gr.2505604. PubMed DOI PMC
Salser SJ, Kenyon C. Activation of a C. elegans Antennapedia homologue in migrating cells controls their direction of migration. Nature. 1992;355:255–258. doi: 10.1038/355255a0. PubMed DOI
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nature Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Shaye DD, Greenwald I. OrthoList: a compendium of C. elegans genes with human orthologs. PLOS ONE. 2011;6:e20085. doi: 10.1371/journal.pone.0020085. PubMed DOI PMC
Sherwood DR, Plastino J. Invading, leading and navigating cells in Caenorhabditis elegans: Insights into cell movement in vivo. Genetics. 2018;208:53–78. doi: 10.1534/genetics.117.300082. PubMed DOI PMC
Silhankova M, Korswagen HC. Migration of neuronal cells along the anterior–posterior body axis of C. elegans: Wnts are in control. Current Opinion in Genetics & Development. 2007;17:320–325. doi: 10.1016/j.gde.2007.05.007. PubMed DOI
Smythe E, Ayscough KR. The Ark1/Prk1 family of protein kinases. Regulators of endocytosis and the actin skeleton. EMBO Reports. 2003;4:246–251. doi: 10.1038/sj.embor.embor776. PubMed DOI PMC
Song S, Zhang B, Sun H, Li X, Xiang Y, Liu Z, Huang X, Ding M. A Wnt-Frz/Ror-Dsh pathway regulates neurite outgrowth in Caenorhabditis elegans. PLOS Genetics. 2010;6:e1001056. doi: 10.1371/journal.pgen.1001056. PubMed DOI PMC
Sorensen EB, Conner SD. AAK1 regulates numb function at an early step in clathrin‐mediated endocytosis. Traffic. 2008;9:1791–1800. doi: 10.1111/j.1600-0854.2008.00790.x. PubMed DOI
Sorrell FJ, Szklarz M, Abdul Azeez KR, Elkins JM, Knapp S. Family-wide structural analysis of human numb-associated protein kinases. Structure. 2016;24:401–411. doi: 10.1016/j.str.2015.12.015. PubMed DOI PMC
Spencer AG, Orita S, Malone CJ, Han M. A RHO GTPase-mediated pathway is required during P cell migration in Caenorhabditis elegans. PNAS. 2001;98:13132–13137. doi: 10.1073/pnas.241504098. PubMed DOI PMC
Sundaram MV, Buechner M. The Caenorhabditis elegans excretory system: A model for tubulogenesis, cell fate specification, and plasticity. Genetics. 2016;203:35–63. doi: 10.1534/genetics.116.189357. PubMed DOI PMC
Tax FE, Thomas JH, Ferguson EL, Horvitz HR. Identification and characterization of genes that interact with lin-12 in Caenorhabditis elegans. Genetics. 1997;147:1675–1695. doi: 10.1093/genetics/147.4.1675. PubMed DOI PMC
Tsushima H, Malabarba MG, Confalonieri S, Senic-Matuglia F, Verhoef LGGC, Bartocci C, D’Ario G, Cocito A, Di Fiore PP, Salcini AE. A snapshot of the physical and functional wiring of the Eps15 homology domain network in the nematode. PLOS ONE. 2013;8:e56383. doi: 10.1371/journal.pone.0056383. PubMed DOI PMC
Whangbo J, Kenyon C. A Wnt signaling system that specifies two patterns of cell migration in C. elegans. Molecular Cell. 1999;4:851–858. doi: 10.1016/s1097-2765(00)80394-9. PubMed DOI
Wildwater M, Sander N, de Vreede G, van den Heuvel S. Cell shape and Wnt signaling redundantly control the division axis of C. elegans epithelial stem cells. Development. 2011;138:4375–4385. doi: 10.1242/dev.066431. PubMed DOI
Wrobel AG, Kadlecova Z, Kamenicky J, Yang J-C, Herrmann T, Kelly BT, McCoy AJ, Evans PR, Martin S, Müller S, Salomon S, Sroubek F, Neuhaus D, Höning S, Owen DJ. Temporal ordering in endocytic clathrin-coated vesicle Formation via AP2 phosphorylation. Developmental Cell. 2019;50:494–508. doi: 10.1016/j.devcel.2019.07.017. PubMed DOI PMC
Wu YC, Chiang YC, Chou SH, Pan CL. Wnt signalling and endocytosis: Mechanisms, controversies and implications for stress responses. Biology of the Cell. 2021;113:95–106. doi: 10.1111/boc.202000099. PubMed DOI
Xin X, Wang Y, Zhang L, Zhang D, Sha L, Zhu Z, Huang X, Mao W, Zhang J. Development and therapeutic potential of adaptor-associated kinase 1 inhibitors in human multifaceted diseases. European Journal of Medicinal Chemistry. 2023;248:115102. doi: 10.1016/j.ejmech.2023.115102. PubMed DOI
Yamaguchi A, Urano T, Goi T, Feig LA. An eps homology (EH) domain protein that binds to the ral-GTPase target, RalBP1. Journal of Biological Chemistry. 1997;272:31230–31234. doi: 10.1074/jbc.272.50.31230. PubMed DOI
Yang PT, Lorenowicz MJ, Silhankova M, Coudreuse DYM, Betist MC, Korswagen HC. Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells. Developmental Cell. 2008;14:140–147. doi: 10.1016/j.devcel.2007.12.004. PubMed DOI
Yang WK, Peng YH, Li H, Lin HC, Lin YC, Lai TT, Suo H, Wang CH, Lin WH, Ou CY, Zhou X, Pi H, Chang HC, Chien CT. Nak regulates localization of clathrin sites in higher-order dendrites to promote local dendrite growth. Neuron. 2011;72:285–299. doi: 10.1016/j.neuron.2011.08.028. PubMed DOI
Yu J, Chia J, Canning CA, Jones CM, Bard FA, Virshup DM. WLS retrograde transport to the endoplasmic reticulum during Wnt secretion. Developmental Cell. 2014;29:277–291. doi: 10.1016/j.devcel.2014.03.016. PubMed DOI
Zaiontz C. Real Statistics Resource Pack. v7.6REAL STATISTICS USING EXCEL. 2021 https://www.real-statistics.com
Zallen JA, Kirch SA, Bargmann CI. Genes required for axon pathfinding and extension in the C. elegans nerve ring. Development. 1999;126:3679–3692. doi: 10.1242/dev.126.16.3679. PubMed DOI
Zhao Z, Sheps JA, Ling V, Fang LL, Baillie DL. Expression analysis of ABC transporters reveals differential functions of tandemly duplicated genes in Caenorhabditis elegans. Journal of Molecular Biology. 2004;344:409–417. doi: 10.1016/j.jmb.2004.09.052. PubMed DOI
Zheng C, Diaz-Cuadros M, Chalfie M. Dishevelled attenuates the repelling activity of Wnt signaling during neurite outgrowth in Caenorhabditis elegans. PNAS. 2015;112:13243–13248. doi: 10.1073/pnas.1518686112. PubMed DOI PMC
Zinovyeva AY, Forrester WC. The C. elegans Frizzled CFZ-2 is required for cell migration and interacts with multiple Wnt signaling pathways. Developmental Biology. 2005;285:447–461. doi: 10.1016/j.ydbio.2005.07.014. PubMed DOI
Zinovyeva AY, Yamamoto Y, Sawa H, Forrester WC. Complex network of Wnt signaling regulates neuronal migrations during Caenorhabditis elegans development. Genetics. 2008;179:1357–1371. doi: 10.1534/genetics.108.090290. PubMed DOI PMC