Single-fly assemblies fill major phylogenomic gaps across the Drosophilidae Tree of Life

. 2023 Oct 02 ; () : . [epub] 20231002

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu preprinty, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37873137

Grantová podpora
R35 GM122592 NIGMS NIH HHS - United States
F32 GM135998 NIGMS NIH HHS - United States
R35 GM148244 NIGMS NIH HHS - United States
R35 GM138286 NIGMS NIH HHS - United States
T32 HG000044 NHGRI NIH HHS - United States
R35 GM118165 NIGMS NIH HHS - United States
R35 GM137834 NIGMS NIH HHS - United States
K99 GM137041 NIGMS NIH HHS - United States

Long-read sequencing is driving rapid progress in genome assembly across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab. Here, we build upon our previous methods to perform amplification-free ONT sequencing of single wild flies obtained either directly from the field or from ethanol-preserved specimens in museum collections, greatly improving the representation of lesser studied drosophilid taxa in whole-genome data. Using Illumina Novaseq X Plus and ONT P2 sequencers with R10.4.1 chemistry, we set a new benchmark for inexpensive hybrid genome assembly at US $150 per genome while assembling genomes from as little as 35 ng of genomic DNA from a single fly. We present 183 new genome assemblies for 179 species as a resource for drosophilid systematics, phylogenetics, and comparative genomics. Of these genomes, 62 are from pooled lab strains and 121 from single adult flies. Despite the sample limitations of working with small insects, most single-fly diploid assemblies are comparable in contiguity (>1Mb contig N50), completeness (>98% complete dipteran BUSCOs), and accuracy (>QV40 genome-wide with ONT R10.4.1) to assemblies from inbred lines. We present a well-resolved multi-locus phylogeny for 360 drosophilid and 4 outgroup species encompassing all publicly available (as of August 2023) genomes for this group. Finally, we present a Progressive Cactus whole-genome, reference-free alignment built from a subset of 298 suitably high-quality drosophilid genomes. The new assemblies and alignment, along with updated laboratory protocols and computational pipelines, are released as an open resource and as a tool for studying evolution at the scale of an entire insect family.

Baylor College of Medicine USA

Center for Reproductive Evolution Department of Biology Syracuse University USA

CZ Biohub Investigator

Daintree Rainforest Observatory James Cook University Australia

Department of Biological and Environmental Science University of Jyväskylä Finland

Department of Biological Sciences Hokkaido University Japan

Department of Biological Sciences Michigan Technological University USA

Department of Biological Sciences Tokyo Metropolitan University Japan

Department of Biological Sciences Virginia Tech USA

Department of Biology Case Western Reserve University USA

Department of Biology Stanford University USA

Department of Biology University of North Carolina Chapel Hill USA

Department of Cell and Molecular Biology University of California Berkeley United States

Department of Complexity Science and Engineering The University of Tokyo Japan

Department of Developmental Biology Stanford University USA

Department of Ecology and Evolutionary Biology Yale University USA

Department of Entomology Cornell University USA

Department of Evolution and Ecology University of California Davis USA

Department of Zoology The University of British Columbia

Division of Genetic Medicine Department of Pediatrics; Department of Laboratory Medicine and Pathology University of Washington USA

Hawaii Invertebrate Program Division of Forestry and Wildlife State of Hawaii USA

Hokkaido University Museum Hokkaido University Japan

Howard Hughes Medical Institute University of California Berkeley United States

Institute of Ecology and Evolution University of Edinburgh UK

Institute of Entomology Biology Centre Czech Academy of Sciences Czechia

Pacific Biosciences Research Center University of Hawai'i Mānoa USA

School of Environmental and Natural Sciences Bangor University UK

School of Life Sciences University of Nevada Las Vegas USA

Aktualizováno

PubMed

Zobrazit více v PubMed

Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F., George R. A., Lewis S. E., Richards S., Ashburner M., Henderson S. N., Sutton G. G., Wortman J. R., Yandell M. D., Zhang Q., … Venter J. C. (2000). The Genome Sequence of Drosophila melanogaster. Science, 287(5461), 2185–2195. 10.1126/science.287.5461.2185 PubMed DOI

Adams M., McBroome J., Maurer N., Pepper-Tunick E., Saremi N. F., Green R. E., Vollmers C., & Corbett-Detig R. B. (2020). One fly–one genome: Chromosome-scale genome assembly of a single outbred Drosophila melanogaster. Nucleic Acids Research, 48(13), e75–e75. 10.1093/nar/gkaa450 PubMed DOI PMC

Alonge M., Lebeigle L., Kirsche M., Jenike K., Ou S., Aganezov S., Wang X., Lippman Z. B., Schatz M. C., & Soyk S. (2022). Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biology, 23(1), 258. 10.1186/s13059-022-02823-7 PubMed DOI PMC

Armstrong J., Hickey G., Diekhans M., Fiddes I. T., Novak A. M., Deran A., Fang Q., Xie D., Feng S., Stiller J., Genereux D., Johnson J., Marinescu V. D., Alföldi J., Harris R. S., Lindblad-Toh K., Haussler D., Karlsson E., Jarvis E. D., … Paten B. (2020). Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature, 587(7833), Article 7833. 10.1038/s41586-020-2871-y PubMed DOI PMC

Astashyn A., Tvedte E. S., Sweeney D., Sapojnikov V., Bouk N., Joukov V., Mozes E., Strope P. K., Sylla P. M., Wagner L., Bidwell S. L., Clark K., Davis E. W., Smith-White B., Hlavina W., Pruitt K. D., Schneider V. A., & Murphy T. D. (2023). Rapid and sensitive detection of genome contamination at scale with FCS-GX (p. 2023.06.02.543519). bioRxiv. 10.1101/2023.06.02.543519 PubMed DOI PMC

Aury J.-M., & Istace B. (2021). Hapo-G, haplotype-aware polishing of genome assemblies with accurate reads. NAR Genomics and Bioinformatics, 3(2), lqab034. 10.1093/nargab/lqab034 PubMed DOI PMC

Bächli G. (2023, July). TaxoDros. https://www.taxodros.uzh.ch/

Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S., Prjibelski A. D., Pyshkin A. V., Sirotkin A. V., Vyahhi N., Tesler G., Alekseyev M. A., & Pevzner P. A. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 19(5), 455–477. 10.1089/cmb.2012.0021 PubMed DOI PMC

Bushnell B. (2022, October 6). BBMap. https://sourceforge.net/projects/bbmap/

Cheng H., Concepcion G. T., Feng X., Zhang H., & Li H. (2021). Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods, 18(2), Article 2. 10.1038/s41592-020-01056-5 PubMed DOI PMC

Christmas M. J., Kaplow I. M., Genereux D. P., Dong M. X., Hughes G. M., Li X., Sullivan P. F., Hindle A. G., Andrews G., Armstrong J. C., Bianchi M., Breit A. M., Diekhans M., Fanter C., Foley N. M., Goodman D. B., Goodman L., Keough K. C., Kirilenko B., … Karlsson E. K. (2023). Evolutionary constraint and innovation across hundreds of placental mammals. Science, 380(6643), eabn3943. 10.1126/science.abn3943 PubMed DOI PMC

Church S. H., & Extavour C. G. (2022). Phylotranscriptomics Reveals Discordance in the Phylogeny of Hawaiian Drosophila and Scaptomyza (Diptera: Drosophilidae). Molecular Biology and Evolution, 39(3), msac012. 10.1093/molbev/msac012 PubMed DOI PMC

Clark A. G., Eisen M. B., Smith D. R., Bergman C. M., Oliver B., Markow T. A., Kaufman T. C., Kellis M., Gelbart W., Iyer V. N., Pollard D. A., Sackton T. B., Larracuente A. M., Singh N. D., Abad J. P., Abt D. N., Adryan B., Aguade M., Akashi H., … *Broad Institute Genome Sequencing Platform. (2007). Evolution of genes and genomes on the Drosophila phylogeny. Nature, 450(7167), Article 7167. 10.1038/nature06341 PubMed DOI

dos Santos G., Schroeder A. J., Goodman J. L., Strelets V. B., Crosby M. A., Thurmond J., Emmert D. B., Gelbart W. M., & the FlyBase Consortium. (2015). FlyBase: Introduction of the Drosophila melanogaster Release 6 reference genome assembly and large-scale migration of genome annotations. Nucleic Acids Research, 43(D1), D690–D697. 10.1093/nar/gku1099 PubMed DOI PMC

Dylus D., Altenhoff A., Majidian S., Sedlazeck F. J., & Dessimoz C. (2023). Inference of phylogenetic trees directly from raw sequencing reads using Read2Tree. Nature Biotechnology, 1–9. 10.1038/s41587-023-01753-4 PubMed DOI PMC

Fiddes I. T., Armstrong J., Diekhans M., Nachtweide S., Kronenberg Z. N., Underwood J. G., Gordon D., Earl D., Keane T., Eichler E. E., Haussler D., Stanke M., & Paten B. (2018). Comparative Annotation Toolkit (CAT)—Simultaneous clade and personal genome annotation. Genome Research, 28(7), 1029–1038. 10.1101/gr.233460.117 PubMed DOI PMC

Finet C., Kassner V. A., Carvalho A. B., Chung H., Day J. P., Day S., Delaney E. K., De Ré F. C., Dufour H. D., Dupim E., Izumitani H. F., Gautério T. B., Justen J., Katoh T., Kopp A., Koshikawa S., Longdon B., Loreto E. L., Nunes M. D. S., … Marlétaz F. (2021). DrosoPhyla: Resources for Drosophilid Phylogeny and Systematics. Genome Biology and Evolution, 13(8), evab179. 10.1093/gbe/evab179 PubMed DOI PMC

Flynn J. M., Hubley R., Goubert C., Rosen J., Clark A. G., Feschotte C., & Smit A. F. (2020). RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences, 117(17), 9451–9457. 10.1073/pnas.1921046117 PubMed DOI PMC

Gremme G., Steinbiss S., & Kurtz S. (2013). GenomeTools: A Comprehensive Software Library for Efficient Processing of Structured Genome Annotations. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(03), 645–656. 10.1109/TCBB.2013.68 PubMed DOI

Guan D., McCarthy S. A., Wood J., Howe K., Wang Y., & Durbin R. (2020). Identifying and removing haplotypic duplication in primary genome assemblies. Bioinformatics, 36(9), 2896–2898. 10.1093/bioinformatics/btaa025 PubMed DOI PMC

Hickey G., Paten B., Earl D., Zerbino D., & Haussler D. (2013). HAL: A hierarchical format for storing and analyzing multiple genome alignments. Bioinformatics, 29(10), 1341–1342. 10.1093/bioinformatics/btt128 PubMed DOI PMC

Holley G., Beyter D., Ingimundardottir H., Møller P. L., Kristmundsdottir S., Eggertsson H. P., & Halldorsson B. V. (2021). Ratatosk: Hybrid error correction of long reads enables accurate variant calling and assembly. Genome Biology, 22(1), 28. 10.1186/s13059-020-02244-4 PubMed DOI PMC

Hubisz M. J., Pollard K. S., & Siepel A. (2011). PHAST and RPHAST: Phylogenetic analysis with space/time models. Briefings in Bioinformatics, 12(1), 41–51. 10.1093/bib/bbq072 PubMed DOI PMC

Katoh K., & Standley D. M. (2013). MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30(4), 772–780. 10.1093/molbev/mst010 PubMed DOI PMC

Kim B. Y., Wang J. R., Miller D. E., Barmina O., Delaney E., Thompson A., Comeault A. A., Peede D., D’Agostino E. R., Pelaez J., Aguilar J. M., Haji D., Matsunaga T., Armstrong E. E., Zych M., Ogawa Y., Stamenković-Radak M., Jelić M., Veselinović M. S., … Petrov D. A. (2021). Highly contiguous assemblies of 101 drosophilid genomes. eLife, 10, e66405. 10.7554/eLife.66405 PubMed DOI PMC

Kingan S. B., Heaton H., Cudini J., Lambert C. C., Baybayan P., Galvin B. D., Durbin R., Korlach J., & Lawniczak M. K. N. (2019). A High-Quality De novo Genome Assembly from a Single Mosquito Using PacBio Sequencing. Genes, 10(1), Article 1. 10.3390/genes10010062 PubMed DOI PMC

Kolmogorov M., Billingsley K. J., Mastoras M., Meredith M., Monlong J., Lorig-Roach R., Asri M., Jerez P. A., Malik L., Dewan R., Reed X., Genner R. M., Daida K., Behera S., Shafin K., Pesout T., Prabakaran J., Carnevali P., Consortium (NABEC), N. A. B. E., … Paten B. (2023). Scalable Nanopore sequencing of human genomes provides a comprehensive view of haplotype-resolved variation and methylation (p. 2023.01.12.523790). bioRxiv. 10.1101/2023.01.12.523790 PubMed DOI PMC

Kolmogorov M., Yuan J., Lin Y., & Pevzner P. A. (2019). Assembly of long, error-prone reads using repeat graphs. Nature Biotechnology, 37(5), Article 5. 10.1038/s41587-019-0072-8 PubMed DOI

Köster J., & Rahmann S. (2012). Snakemake—A scalable bioinformatics workflow engine. Bioinformatics, 28(19), 2520–2522. 10.1093/bioinformatics/bts480 PubMed DOI

Kriventseva E. V., Kuznetsov D., Tegenfeldt F., Manni M., Dias R., Simão F. A., & Zdobnov E. M. (2019). OrthoDB v10: Sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Research, 47(D1), D807–D811. 10.1093/nar/gky1053 PubMed DOI PMC

Langley C. H., Stevens K., Cardeno C., Lee Y. C. G., Schrider D. R., Pool J. E., Langley S. A., Suarez C., Corbett-Detig R. B., Kolaczkowski B., Fang S., Nista P. M., Holloway A. K., Kern A. D., Dewey C. N., Song Y. S., Hahn M. W., & Begun D. J. (2012). Genomic Variation in Natural Populations of Drosophila melanogaster. Genetics, 192(2), 533–598. 10.1534/genetics.112.142018 PubMed DOI PMC

Letunic I., & Bork P. (2021). Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. 10.1093/nar/gkab301 PubMed DOI PMC

Li H. (2016). Minimap and miniasm: Fast mapping and de novo assembly for noisy long sequences. Bioinformatics, 32(14), 2103–2110. 10.1093/bioinformatics/btw152 PubMed DOI PMC

Li H., Janssens J., De Waegeneer M., Kolluru S. S., Davie K., Gardeux V., Saelens W., David F. P. A., Brbić M., Spanier K., Leskovec J., McLaughlin C. N., Xie Q., Jones R. C., Brueckner K., Shim J., Tattikota S. G., Schnorrer F., Rust K., … Aerts S. (2022). Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science, 375(6584), eabk2432. 10.1126/science.abk2432 PubMed DOI PMC

Machado H. E., Bergland A. O., O’Brien K. R., Behrman E. L., Schmidt P. S., & Petrov D. A. (2016). Comparative population genomics of latitudinal variation in Drosophila simulans and Drosophila melanogaster. Molecular Ecology, 25(3), 723–740. 10.1111/mec.13446 PubMed DOI PMC

Mackay T. F. C., Richards S., Stone E. A., Barbadilla A., Ayroles J. F., Zhu D., Casillas S., Han Y., Magwire M. M., Cridland J. M., Richardson M. F., Anholt R. R. H., Barrón M., Bess C., Blankenburg K. P., Carbone M. A., Castellano D., Chaboub L., Duncan L., … Gibbs R. A. (2012). The Drosophila melanogaster Genetic Reference Panel. Nature, 482(7384), Article 7384. 10.1038/nature10811 PubMed DOI PMC

Magnacca K., & Price D. (2012). New species of Hawaiian picture wing Drosophila (Diptera: Drosophilidae), with a key to species. Zootaxa, 3188, 1–30. 10.11646/zootaxa.3188.1.1 DOI

Mahajan S., Wei K. H.-C., Nalley M. J., Gibilisco L., & Bachtrog D. (2018). De novo assembly of a young Drosophila Y chromosome using single-molecule sequencing and chromatin conformation capture. PLOS Biology, 16(7), e2006348. 10.1371/journal.pbio.2006348 PubMed DOI PMC

Manni M., Berkeley M. R., Seppey M., Simão F. A., & Zdobnov E. M. (2021). BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Molecular Biology and Evolution, 38(10), 4647–4654. 10.1093/molbev/msab199 PubMed DOI PMC

Miller D. E., Staber C., Zeitlinger J., & Hawley R. S. (2018). Highly Contiguous GenomeAssemblies of 15 Drosophila Species Generated Using Nanopore Sequencing. G3: Genes, Genomes, Genetics, 8(10), 3131–3141. 10.1534/g3.118.200160 PubMed DOI PMC

Minh B. Q., Schmidt H. A., Chernomor O., Schrempf D., Woodhams M. D., von Haeseler A., & Lanfear R. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530–1534. 10.1093/molbev/msaa015 PubMed DOI PMC

modENCODE Consortium T., Roy S., Ernst J., Kharchenko P. V., Kheradpour P., Negre N., Eaton M. L., Landolin J. M., Bristow C. A., Ma L., Lin M. F., Washietl S., Arshinoff B. I., Ay F., Meyer P. E., Robine N., Washington N. L., Stefano L. D., Berezikov E., … Kellis M. (2010). Identification of Functional Elements and Regulatory Circuits by Drosophila modENCODE. Science, 330(6012), 1787–1797. 10.1126/science.1198374 PubMed DOI PMC

Obbard D. J., Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, & Darwin Tree of Life Consortium. (2023). The genome sequence of a drosophilid fruit fly, Hirtodrosophila cameraria (Haliday, 1833). https://wellcomeopenresearch.org/articles/8-361 PubMed PMC

O’Grady P. M., & DeSalle R. (2018). Phylogeny of the Genus Drosophila. Genetics, 209(1), 1–25. 10.1534/genetics.117.300583 PubMed DOI PMC

O’Grady P., Magnacca K., & Lapoint R. (2010). Taxonomic relationships within the endemic Hawaiian Drosophilidae (Insecta: Diptera). Records of the Hawaii Biological Survey, 108, 1–34.

Ohta T. (1993). Amino acid substitution at the Adh locus of Drosophila is facilitated by small population size. Proceedings of the National Academy of Sciences, 90(10), 4548–4551. 10.1073/pnas.90.10.4548 PubMed DOI PMC

Pollard K. S., Hubisz M. J., Rosenbloom K. R., & Siepel A. (2010). Detection of nonneutral substitution rates on mammalian phylogenies. Genome Research, 20(1), 110–121. 10.1101/gr.097857.109 PubMed DOI PMC

Quinlan A. R., & Hall I. M. (2010). BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841–842. 10.1093/bioinformatics/btq033 PubMed DOI PMC

Ratnasingham S., & Hebert P. D. N. (2007). bold: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7(3), 355–364. 10.1111/j.1471-8286.2007.01678.x PubMed DOI PMC

Rhie A., McCarthy S. A., Fedrigo O., Damas J., Formenti G., Koren S., Uliano-Silva M., Chow W., Fungtammasan A., Kim J., Lee C., Ko B. J., Chaisson M., Gedman G. L., Cantin L. J., Thibaud-Nissen F., Haggerty L., Bista I., Smith M., … Jarvis E. D. (2021). Towards complete and error-free genome assemblies of all vertebrate species. Nature, 592(7856), Article 7856. 10.1038/s41586-021-03451-0 PubMed DOI PMC

Rhie A., Walenz B. P., Koren S., & Phillippy A. M. (2020). Merqury: Reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biology, 21(1), 245. 10.1186/s13059-020-02134-9 PubMed DOI PMC

Richards S., Liu Y., Bettencourt B. R., Hradecky P., Letovsky S., Nielsen R., Thornton K., Hubisz M. J., Chen R., Meisel R. P., Couronne O., Hua S., Smith M. A., Zhang P., Liu J., Bussemaker H. J., Batenburg M. F. van , Howells S. L., Scherer S. E., … Gibbs R. A. (2005). Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution. Genome Research, 15(1), 1–18. 10.1101/gr.3059305 PubMed DOI PMC

Rolland J., Henao-Diaz L. F., Doebeli M., Germain R., Harmon L. J., Knowles L. L., Liow L. H., Mank J. E., Machac A., Otto S. P., Pennell M., Salamin N., Silvestro D., Sugawara M., Uyeda J., Wagner C. E., & Schluter D. (2023). Conceptual and empirical bridges between micro- and macroevolution. Nature Ecology & Evolution, 7(8), Article 8. 10.1038/s41559-023-02116-7 PubMed DOI

Shafin K., Pesout T., Chang P.-C., Nattestad M., Kolesnikov A., Goel S., Baid G., Kolmogorov M., Eizenga J. M., Miga K. H., Carnevali P., Jain M., Carroll A., & Paten B. (2021). Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. Nature Methods, 18(11), Article 11. 10.1038/s41592-021-01299-w PubMed DOI PMC

Shpak M., Ghanavi H. R., Lange J. D., Pool J. E., & Stensmyr M. C. (2023). Genomes from 25 historical Drosophila melanogaster specimens illuminate adaptive and demographic changes across more than 200 years of evolution (p. 2023.04.24.538033). bioRxiv. 10.1101/2023.04.24.538033 PubMed DOI PMC

Shumate A., & Salzberg S. L. (2021). Liftoff: Accurate mapping of gene annotations. Bioinformatics, btaa1016. 10.1093/bioinformatics/btaa1016 PubMed DOI PMC

Smit A. F. A., Hubley R., & Green P. (2013, 2015). RepeatMasker Open-4.0. RepeatMasker Open-4.0.

Solares E. A., Chakraborty M., Miller D. E., Kalsow S., Hall K., Perera A. G., Emerson J. J., & Hawley R. S. (2018). Rapid Low-Cost Assembly of the Drosophila melanogaster Reference Genome Using Low-Coverage, Long-Read Sequencing. G3 Genes|Genomes|Genetics, 8(10), 3143–3154. 10.1534/g3.118.200162 PubMed DOI PMC

Spieth H. T., & Heed W. B. (1975). The Drosophila pinicola species group. (Diptera: Drosophilidae). Pan-Pacific Entomologist, 51(4), 287–295.

Stanke M., Diekhans M., Baertsch R., & Haussler D. (2008). Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics, 24(5), 637–644. 10.1093/bioinformatics/btn013 PubMed DOI

Sturtevant A. H., & Novitski E. (1941). The Homologies of the Chromosome Elements in the Genus Drosophila. Genetics, 26(5), 517–541. PubMed PMC

Suvorov A., Kim B. Y., Wang J., Armstrong E. E., Peede D., D’Agostino E. R. R., Price D. K., Waddell P. J., Lang M., Courtier-Orgogozo V., David J. R., Petrov D., Matute D. R., Schrider D. R., & Comeault A. A. (2022). Widespread introgression across a phylogeny of 155 Drosophila genomes. Current Biology, 32(1), 111–123.e5. 10.1016/j.cub.2021.10.052 PubMed DOI PMC

Suyama M., Torrents D., & Bork P. (2006). PAL2NAL: Robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research, 34(suppl_2), W609–W612. 10.1093/nar/gkl315 PubMed DOI PMC

Vicoso B., & Bachtrog D. (2015). Numerous Transitions of Sex Chromosomes in Diptera. PLOS Biology, 13(4), e1002078. 10.1371/journal.pbio.1002078 PubMed DOI PMC

Walker B. J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., Cuomo C. A., Zeng Q., Wortman J., Young S. K., & Earl A. M. (2014). Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLOS ONE, 9(11), e112963. 10.1371/journal.pone.0112963 PubMed DOI PMC

Weisman C. M., Murray A. W., & Eddy S. R. (2022). Mixing genome annotation methods in a comparative analysis inflates the apparent number of lineage-specific genes. Current Biology, 32(12), 2632–2639.e2. 10.1016/j.cub.2022.04.085 PubMed DOI PMC

Werner T., Steenwinkel T., & Jaenike J. (2018). The Encyclopedia of North American Drosophilids Volume 1: Drosophilids of the Midwest and Northeast. Open Access Books. https://digitalcommons.mtu.edu/oabooks/1

Werner T., Steenwinkel T., & Jaenike J. (2020). The Encyclopedia of North American Drosophilids Volume 2: Drosophilids of the Southeast. Open Access Books. https://digitalcommons.mtu.edu/oabooks/3

Yin J., Zhang C., & Mirarab S. (2019). ASTRAL-MP: Scaling ASTRAL to very large datasets using randomization and parallelization. Bioinformatics, 35(20), 3961–3969. 10.1093/bioinformatics/btz211 PubMed DOI

Zhang C., Rabiee M., Sayyari E., & Mirarab S. (2018). ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics, 19(6), 153. 10.1186/s12859-018-2129-y PubMed DOI PMC

Zhang F., Ding Y., Zhu C.-D., Zhou X., Orr M. C., Scheu S., & Luan Y.-X. (2019). Phylogenomics from low-coverage whole-genome sequencing. Methods in Ecology and Evolution, 10(4), 507–517. 10.1111/2041-210X.13145 DOI

Zhao L., & Begun D. J. (2017). Genomics of parallel adaptation at two timescales in Drosophila. PLOS Genetics, 13(10), e1007016. 10.1371/journal.pgen.1007016 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...