Conceptual and empirical bridges between micro- and macroevolution
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
37429904
DOI
10.1038/s41559-023-02116-7
PII: 10.1038/s41559-023-02116-7
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- biologická evoluce * MeSH
- molekulární evoluce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Explaining broad molecular, phenotypic and species biodiversity patterns necessitates a unifying framework spanning multiple evolutionary scales. Here we argue that although substantial effort has been made to reconcile microevolution and macroevolution, much work remains to identify the links between biological processes at play. We highlight four major questions of evolutionary biology whose solutions require conceptual bridges between micro and macroevolution. We review potential avenues for future research to establish how mechanisms at one scale (drift, mutation, migration, selection) translate to processes at the other scale (speciation, extinction, biogeographic dispersal) and vice versa. We propose ways in which current comparative methods to infer molecular evolution, phenotypic evolution and species diversification could be improved to specifically address these questions. We conclude that researchers are in a better position than ever before to build a synthesis to understand how microevolutionary dynamics unfold over millions of years.
Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
Department of Biological Sciences Virginia Tech Blacksburg VA USA
Department of Biology University of Fribourg Fribourg Switzerland
Department of Botany and Program in Ecology and Evolution University of Wyoming Laramie WY USA
Department of Computational Biology University of Lausanne Lausanne Switzerland
Department of Ecology and Evolution University of Chicago Chicago IL USA
Dept of Biological Sciences University of Idaho Moscow ID USA
Gothenburg Global Biodiversity Centre University of Gothenburg Gothenburg Sweden
Laboratory of Environmental Microbiology Institute of Microbiology of the CAS Prague Czech Republic
Zobrazit více v PubMed
Huxley, J. Evolution. The Modern Synthesis (George Allen & Unwin, 1942).
Harmon, L. J. et al. Causes and consequences of apparent timescaling across all estimated evolutionary rates. Annu. Rev. Ecol. Evol. Syst. 52, 587–609 (2021). DOI
Charlesworth, B., Lande, R. & Slatkin, M. A neo‐Darwinian commentary on macroevolution. Evolution 36, 474–498 (1982). PubMed
Estes, S. & Arnold, S. J. Resolving the paradox of stasis: models with stabilizing selection explain evolutionary divergence on all timescales. Am. Nat. 169, 227–244 (2007). PubMed DOI
Hansen, T. F. & Martins, E. P. Translating between microevolutionary process and macroevolutionary patterns: the correlation structure of interspecific data. Evolution 50, 1404–1417 (1996). PubMed DOI
Reznick, D. N. & Ricklefs, R. E. Darwin’s bridge between microevolution and macroevolution. Nature 457, 837–842 (2009). PubMed DOI
Rolland, J., Silvestro, D., Litsios, G., Faye, L. & Salamin, N. Clownfishes evolution below and above the species level. Proc. R. Soc. B 285, 20171796 (2018). PubMed DOI PMC
Arnold, S. J., Pfrender, M. E. & Jones, A. G. The adaptive landscape as a conceptual bridge between micro- and macroevolution. Genetica 112, 9–32 (2001). PubMed DOI
Singhal, S. et al. No link between population isolation and speciation rate in squamate reptiles. Proc. Natl Acad. Sci. USA 119, e2113388119 (2022). PubMed DOI PMC
Rabosky, D. L. & Matute, D. R. Macroevolutionary speciation rates are decoupled from the evolution of intrinsic reproductive isolation in Drosophila and birds. Proc. Natl Acad. Sci. USA 110, 15354–15359 (2013). PubMed DOI PMC
Dynesius, M. & Jansson, R. Persistence of within‐species lineages: a neglected control of speciation rates. Evolution 68, 923–934 (2014). PubMed DOI
Alencar, L. R. V. D. & Quental, T. B. Linking population‐level and microevolutionary processes to understand speciation dynamics at the macroevolutionary scale. Ecol. Evol. 11, 5828–5843 (2021). PubMed DOI PMC
Hua, X., Herdha, T. & Burden, C. J. Protracted speciation under the state-dependent speciation and extinction approach. Syst. Biol. 71, 1362–1377 (2022). PubMed DOI PMC
Simpson, G. G. Tempo and Mode in Evolution (Columbia Univ. Press, 1944).
Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, 1974).
Gould, S. J. & Eldredge, N. Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology 3, 115–151 (1977). DOI
Hansen, T. F. & Houle, D. in Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes (eds Pigliucci, M. & Preston, K.) 130–150 (Oxford Univ. Press, 2004).
Haller, B. C. & Hendry, A. P. Solving the paradox of stasis: squashed stabilizing selection and the limits of detection. Evolution 68, 483–500 (2014). PubMed DOI
Ho, S. Y., Phillips, M. J., Cooper, A. & Drummond, A. J. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol. Biol. Evol. 22, 1561–1568 (2005). PubMed DOI
Ho, S. Y. et al. Time‐dependent rates of molecular evolution. Mol. Ecol. 20, 3087–3101 (2011). PubMed DOI
Ho, S. Y., Duchêne, S., Molak, M. & Shapiro, B. Time‐dependent estimates of molecular evolutionary rates: evidence and causes. Mol. Ecol. 24, 6007–6012 (2015). PubMed DOI
Gingerich, P. D. Rates of Evolution: a Quantitative Synthesis (Cambridge Univ. Press, 2019).
Magallon, S. & Sanderson, M. J. Absolute diversification rates in angiosperm clades. Evolution 55, 1762–1780 (2001). PubMed
Ricklefs, R. E. Evolutionary diversification and the origin of the diversity–environment relationship. Ecology 87, S3–S13 (2006). PubMed DOI
McPeek, M. A. & Brown, J. M. Clade age and not diversification rate explains species richness among animal taxa. Am. Nat. 169, E97–E106 (2007). PubMed DOI
Louca, S., Henao‐Diaz, L. F. & Pennell, M. The scaling of diversification rates with age is likely explained by sampling bias. Evolution 76, 1625–1637 (2022). PubMed DOI
Henao-Diaz, L. F., Harmon, L. J., Sugawara, M. T., Miller, E. T. & Pennell, M. W. Macroevolutionary diversification rates show time dependency. Proc. Natl Acad. Sci. USA 116, 7403–7408 (2019). PubMed DOI PMC
Yang Z. Computational Molecular Evolution (Oxford Univ. Press, 2006).
Budd, G. E. & Mann, R. P. History is written by the victors: the effect of the push of the past on the fossil record. Evolution 72, 2276–2291 (2018). PubMed DOI PMC
Nee, S., May, R. M. & Harvey, P. H. The reconstructed evolutionary process. Phil. Trans. R. Soc. Lond. B 344, 305–311 (1994). DOI
Jablonski, D., Roy, K., Valentine, J. W., Price, R. M. & Anderson, P. S. The impact of the pull of the recent on the history of marine diversity. Science 300, 1133–1135 (2003). PubMed DOI
Raup, D. M. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science 206, 217–218 (1979). PubMed DOI
Stadler, T. Mammalian phylogeny reveals recent diversification rate shifts. Proc. Natl Acad. Sci. USA 108, 6187–6192 (2011). PubMed DOI PMC
O’Meara, B. C. & Beaulieu J. M. Potential survival of some, but not all, diversification methods. Preprint at EcoEvoRxiv https://doi.org/10.32942/osf.io/w5nvd (2022).
Futuyma, D. J. On the role of species in anagenesis. Am. Nat. 130, 465–473 (1987). DOI
Futuyma, D. J. Evolutionary constraint and ecological consequences. Evolution 64, 1865–1884 (2010). PubMed DOI
Morlon, H., Parsons, T. L. & Plotkin, J. B. Reconciling molecular phylogenies with the fossil record. Proc. Natl Acad. Sci. USA 108, 16327–16332 (2011). PubMed DOI PMC
Kostikova, A., Silvestro, D., Pearman, P. B. & Salamin, N. Bridging inter- and intraspecific trait evolution with a hierarchical Bayesian approach. Syst. Biol. 65, 417–431 (2016). PubMed DOI
Gaboriau, T., Mendes, F. K., Joly, S., Silvestro, D. & Salamin, N. A multi‐platform package for the analysis of intra‐ and interspecific trait evolution. Methods Ecol. Evol. 11, 1439–1447 (2020). DOI
Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology 45, 546–570 (2019). DOI
Etienne, R. S. & Rosindell, J. Prolonging the past counteracts the pull of the present: protracted speciation can explain observed slowdowns in diversification. Syst. Biol. 61, 204–213 (2012). PubMed DOI PMC
De Maio, N., Schrempf, D. & Kosiol, C. PoMo: an allele frequency-based approach for species tree estimation. Syst. Biol. 64, 1018–1031 (2015). PubMed DOI PMC
Slater, G. J., Harmon, L. J. & Alfaro, M. E. Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution 66, 3931–3944 (2012). PubMed DOI
Rolland, J. et al. The impact of endothermy on the climatic niche evolution and the distribution of vertebrate diversity. Nat. Ecol. Evol. 2, 459–464 (2018). PubMed DOI
Silvestro, D., Warnock, R., Gavryushkina, A. & Stadler, T. Closing the gap between palaeontological and neontological speciation and extinction rate estimates. Nat. Commun. 9, 5237 (2018). PubMed DOI PMC
Mitchell, J. S., Etienne, R. S. & Rabosky, D. L. Inferring diversification rate variation from phylogenies with fossils. Syst. Biol. 68, 1–18 (2019). PubMed
Černý, D., Madzia, D. & Slater, G. J. Empirical and methodological challenges to the model-based inference of diversification rates in extinct clades. Syst. Biol. 71, 153–171 (2022). DOI
Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present, and future of biotic interactions. Science 341, 499–504 (2013). PubMed DOI
Duchen, P., Alfaro, M., Rolland, J., Salamin, N. & Silvestro, D. On the effect of asymmetrical trait inheritance on models of trait evolution. Syst. Biol. 70, 376–388 (2021). PubMed DOI
Voje, K. L., Di Martino, E. & Porto, A. Revisiting a landmark study system: no evidence for a punctuated mode of evolution in Metrarabdotos. Am. Nat. 195, 899–917 (2020). PubMed DOI
Brombacher, A., Wilson, P. A., Bailey, I. & Ezard, T. H. G. The breakdown of static and evolutionary allometries during climatic upheaval. Evolution 190, 299–450 (2017).
Hunt, G. The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proc. Natl Acad. Sci. USA 104, 18404–18408 (2007). PubMed DOI PMC
Voje, K. L. Testing eco‐evolutionary predictions using fossil data: phyletic evolution following ecological opportunity. Evolution 74, 188–200 (2020). PubMed DOI
Webster, M. Morphological homeostasis in the fossil record. Semin. Cell Dev. Biol. 88, 91–104 (2019). PubMed DOI
Fox, J. W. & Lenski, R. E. From here to eternity—the theory and practice of a really long experiment. PLoS Biol. 13, e1002185 (2015). PubMed DOI PMC
Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021). PubMed DOI PMC
Fan, J. X. et al. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science 367, 272–277 (2020). PubMed DOI
Lambert, D. M. et al. Rates of evolution in ancient DNA from Adelie penguins. Science 295, 2270–2273 (2002). PubMed DOI
Hay, J. M. et al. Rapid molecular evolution in a living fossil. Trends Genet. 24, 106–109 (2008). PubMed DOI
Kirch, M., Romundset, A., Gilbert, M. T. P., Jones, F. C. & Foote, A. D. Ancient and modern stickleback genomes reveal the demographic constraints on adaptation. Curr. Biol. 31, 2027–2036 (2021). PubMed DOI
Uyeda, J. C., Hansen, T. F., Arnold, S. J. & Pienaar, J. The million-year wait for macroevolutionary bursts. Proc. Natl Acad. Sci. USA 108, 15908–15913 (2011). PubMed DOI PMC
Landis, M. J. & Schraiber, J. G. Pulsed evolution shaped modern vertebrate body sizes. Proc. Natl Acad. Sci. USA 114, 13224–13229 (2017). PubMed DOI PMC
Pagel, M., O’Donovan, C. & Meade, A. General statistical model shows that macroevolutionary patterns and processes are consistent with Darwinian gradualism. Nat. Commun. 13, 1113 (2022). PubMed DOI PMC
Condamine, F. L., Rolland, J. & Morlon, H. Assessing the causes of diversification slowdowns: temperature‐dependent and diversity‐dependent models receive equivalent support. Ecol. Lett. 22, 1900–1912 (2019). PubMed DOI
Moen, D. & Morlon, H. Why does diversification slow down? Trends Ecol. Evol. 29, 190–197 (2014). PubMed DOI
Amemiya, C. T. et al. The African coelacanth genome provides insights into tetrapod evolution. Nature 496, 311–316 (2013). PubMed DOI PMC
Gemmell, N. J. et al. The tuatara genome reveals ancient features of amniote evolution. Nature 584, 403–409 (2020). PubMed DOI PMC
Zhan, S. H., Otto, S. P. & Barker, M. S. Broad variation in rates of polyploidy and dysploidy across flowering plants is correlated with lineage diversification. Preprint at bioRxiv https://doi.org/10.1101/2021.03.30.436382 (2021).
Merilä, J. & Crnokrak, P. Comparison of genetic differentiation at marker loci and quantitative traits. J. Evol. Biol. 14, 892–903 (2001). DOI
Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014). PubMed DOI PMC
Pujol, B. et al. The missing response to selection in the wild. Trends Ecol. Evol. 33, 337–346 (2018). PubMed DOI PMC
Bonnet, T. et al. Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals. Science 376, 1012–1016 (2022). PubMed DOI
Bonamour, S., Teplitsky, C., Charmantier, A., Crochet, P. A. & Chevin, L. M. Selection on skewed characters and the paradox of stasis. Evolution 71, 2703–2713 (2017). PubMed DOI PMC
Schluter, D. & Grant, P. R. Determinants of morphological patterns in communities of Darwin’s finches. Am. Nat. 123, 175–196 (1984). DOI
Voje, K. L. Tempo does not correlate with mode in the fossil record. Evolution 70, 2678–2689 (2016). PubMed DOI
Mustonen, V. & Lässig, M. From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. Trends Genet. 25, 111–119 (2009). PubMed DOI
Payne, J. L. & Wagner, A. The causes of evolvability and their evolution. Nat. Rev. Genet. 20, 24–38 (2019). PubMed DOI
Hansen, T. F. in The Adaptive Landscape in Evolutionary Biology (eds Svensson, E. & Calsbeek, R.) Ch. 13 (Oxford Univ. Press, 2013).
Rolland, J., Jiguet, F., Jønsson, K. A., Condamine, F. L. & Morlon, H. Settling down of seasonal migrants promotes bird diversification. Proc. R. Soc. B 281, 20140473 (2014). PubMed DOI PMC
Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014). PubMed DOI
Hirt, M. R., Jetz, W., Rall, B. C. & Brose, U. A general scaling law reveals why the largest animals are not the fastest. Nat. Ecol. Evol. 1, 1116–1122 (2017). PubMed DOI
Araújo, M. B. et al. Heat freezes niche evolution. Ecol. Lett. 16, 1206–1219 (2013). PubMed DOI
Martin, C. H. & Wainwright, P. C. Multiple fitness peaks on the adaptive landscape drive adaptive radiation in the wild. Science 339, 208–211 (2013). PubMed DOI
Schluter, D. Adaptive radiation along genetic lines of least resistance. Evolution 50, 1766–1774 (1996). PubMed DOI
Butler, M. A. & King, A. A. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 164, 683–695 (2004). PubMed DOI
Boucher, F. C. & Démery, V. Inferring bounded evolution in phenotypic characters from phylogenetic comparative data. Syst. Biol. 65, 651–661 (2016). PubMed DOI
Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 292–295 (2013). PubMed DOI
FitzJohn, R. G. Quantitative traits and diversification. Syst. Biol. 59, 619–633 (2010). PubMed DOI
Gould, S. J. Gulliver’s further travels: the necessity and difficulty of a hierarchical theory of selection. Phil. Trans. R. Soc. Lond. B 353, 307–314 (1998). DOI
Rabosky, D. L. & McCune, A. R. Reinventing species selection with molecular phylogenies. Trends Ecol. Evol. 25, 68–74 (2010). PubMed DOI
Martins, M. J. F., Puckett, T. M., Lockwood, R., Swaddle, J. P. & Hunt, G. High male sexual investment as a driver of extinction in fossil ostracods. Nature 556, 366–369 (2018). PubMed DOI
McGlothlin, J. W. et al. Adaptive radiation along a deeply conserved genetic line of least resistance in Anolis lizards. Evol. Lett. 2, 310–322 (2018). PubMed DOI PMC
Houle, D., Bolstad, G. H., van der Linde, K. & Hansen, T. F. Mutation predicts 40 million years of fly wing evolution. Nature 548, 447–450 (2017). PubMed DOI
Zalts, H. & Yanai, I. Developmental constraints shape the evolution of the nematode mid-developmental transition. Nat. Ecol. Evol. 1, 0113 (2017). DOI
Pennell, M. W., Harmon, L. J. & Uyeda, J. C. Is there room for punctuated equilibrium in macroevolution? Trends Ecol. Evol. 29, 23–32 (2014). PubMed DOI
Hunt, G. Testing the link between phenotypic evolution and speciation: an integrated palaeontological and phylogenetic analysis. Methods Ecol. Evol. 4, 714–723 (2013). DOI
Schluter, D. The Ecology of Adaptive Radiation (OUP, 2000).
Rabosky, D. L. et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat. Commun. 4, 1958 (2013). PubMed DOI
Erwin, D. H., Valentine, J. W. & Sepkoski, J. J. A comparative study of diversification events: the early Paleozoic versus the Mesozoic. Evolution 41, 1177–1186 (1987). PubMed DOI
Parins-Fukuchi, C., Stull, G. W. & Smith, S. A. Phylogenomic conflict coincides with rapid morphological innovation. Proc. Natl Acad. Sci. USA 118, e2023058118 (2021). PubMed DOI PMC
Stull, G. W. et al. Gene duplications and phylogenomic conflict underlie major pulses of phenotypic evolution in gymnosperms. Nat. Plants 7, 1015–1025 (2021). PubMed DOI
Schluter, D. & Rieseberg, L. H. Three problems in the genetics of speciation by selection. Proc. Natl Acad. Sci. USA 119, e2122153119 (2022). PubMed DOI PMC
Anderson, S. A. & Weir, J. T. Character displacement drives trait divergence in a continental fauna. Proc. Natl Acad. Sci. USA 118, e2021209118 (2021). PubMed DOI PMC
Germain, R. M. et al. On the origin of coexisting species. Trends Ecol. Evol. 36, 284–293 (2021). PubMed DOI
Venditti, C. & Pagel, M. Speciation as an active force in promoting genetic evolution. Trends Ecol. Evol. 25, 14–20 (2010). PubMed DOI
Coyne, J. A. & Orr, H. A. Speciation (Sinauer, 2004).
Rundell, R. J. & Price, T. D. Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol. Evol. 24, 394–399 (2009). PubMed DOI
Rabosky, D. L. Phylogenetic tests for evolutionary innovation: the problematic link between key innovations and exceptional diversification. Phil. Trans. R. Soc. Lond. B 372, 20160417 (2017). DOI
Lanfear, R., Ho, S. Y., Love, D. & Bromham, L. Mutation rate is linked to diversification in birds. Proc. Natl Acad. Sci. USA 107, 20423–20428 (2010). PubMed DOI PMC
Dowle, E. J., Morgan-Richards, M. & Trewick, S. A. Molecular evolution and the latitudinal biodiversity gradient. Heredity 110, 501–510 (2013). PubMed DOI PMC
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004). DOI
Orton, M. G., May, J. A., Ly, W., Lee, D. J. & Adamowicz, S. J. Is molecular evolution faster in the tropics? Heredity 122, 513–524 (2019). PubMed DOI
Hull, P. M. & Norris, R. D. Evidence for abrupt speciation in a classic case of gradual evolution. Proc. Natl Acad. Sci. USA 106, 21224–21229 (2009). PubMed DOI PMC
Franks, S. J., Hamann, E. & Weis, A. E. Using the resurrection approach to understand contemporary evolution in changing environments. Evol. Appl. 11, 17–28 (2018). PubMed DOI
Goldberg, E. E. & Igić, B. Tempo and mode in plant breeding system evolution. Evolution 66, 3701–3709 (2012). PubMed DOI
Wright, A. M., Bapst, D. W., Barido-Sottani, J. & Warnock, R. C. Integrating fossil observations into phylogenetics using the fossilized birth–death model. Annu. Rev. Ecol. Evol. Syst. 53, 251–273 (2022). DOI
Manceau, M., Marin, J., Morlon, H. & Lambert, A. Model-based inference of punctuated molecular evolution. Mol. Biol. Evol. 37, 3308–3323 (2020). PubMed DOI
Obermeyer, F. et al. Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness. Science 376, 1327–1332 (2022). PubMed DOI
Weber, M. G., Wagner, C. E., Best, R. J., Harmon, L. J. & Matthews, B. Evolution in a community context: on integrating ecological interactions and macroevolution. Trends Ecol. Evol. 32, 291–304 (2017). PubMed DOI
Aristide, L. & Morlon, H. Understanding the effect of competition during evolutionary radiations: an integrated model of phenotypic and species diversification. Ecol. Lett. 22, 2006–2017 (2019). PubMed DOI
Nuismer, S. L. & Harmon, L. J. Predicting rates of interspecific interaction from phylogenetic trees. Ecol. Lett. 18, 17–27 (2015). PubMed DOI
Harmon, L. J. et al. Detecting the macroevolutionary signal of species interactions. J. Evol. Biol. 32, 769–782 (2019). PubMed DOI
Blasco-Costa, I., Hayward, A., Poulin, R. & Balbuena, J. A. Next-generation cophylogeny: unravelling eco-evolutionary processes. Trends Ecol. Evol. 36, 907–918 (2021). PubMed DOI
Hembry, D. H. & Weber, M. G. Ecological interactions and macroevolution: a new field with old roots. Annu. Rev. Ecol. Evol. Syst. 51, 215–243 (2020). DOI
Phillimore, A. B. & Price, T. D. Density-dependent cladogenesis in birds. PLoS Biol. 6, e71 (2008). PubMed DOI PMC
Morlon, H., Potts, M. D. & Plotkin, J. B. Inferring the dynamics of diversification: a coalescent approach. PLoS Biol. 8, e1000493 (2010). PubMed DOI PMC
Liow, L. H., Reitan, T. & Harnik, P. G. Ecological interactions on macroevolutionary time scales: clams and brachiopods are more than ships that pass in the night. Ecol. Lett. 18, 1030–1039 (2015). PubMed DOI
Silvestro, D., Antonelli, A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl Acad. Sci. USA 112, 8684–8689 (2015). PubMed DOI PMC
Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28867–28875 (2020). PubMed DOI PMC
Harmon, L. J. & Harrison, S. Species diversity is dynamic and unbounded at local and continental scales. Am. Nat. 185, 584–593 (2015). PubMed DOI
Rabosky, D. L. & Hurlbert, A. H. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185, 572–583 (2015). PubMed DOI
Etienne, R. S. et al. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proc. R. Soc. B 279, 1300–1309 (2012). PubMed DOI
Etienne, R. S. & Haegeman, B. A conceptual and statistical framework for adaptive radiations with a key role for diversity dependence. Am. Nat. 180, E75–E89 (2012). PubMed DOI
Rabosky, D. L. Diversity-dependence, ecological speciation, and the role of competition in macroevolution. Annu. Rev. Ecol. Evol. Syst. 44, 481–502 (2013). DOI
Harmon, L. J., Schulte, J. A., Larson, A. & Losos, J. B. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301, 961–964 (2003). PubMed DOI
Tobias, J. A. et al. Species coexistence and the dynamics of phenotypic evolution in adaptive radiation. Nature 506, 359–363 (2014). PubMed DOI
Drury, J. P. et al. Tempo and mode of morphological evolution are decoupled from latitude in birds. PLoS Biol. 19, e3001270 (2021). PubMed DOI PMC
Carvalho, M. R. et al. Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests. Science 372, 63–68 (2021). PubMed DOI
Reitan, T., Schweder, T. & Henderiks, J. Phenotypic evolution studied by layered stochastic differential equations. Ann. Appl. Stat. 6, 1531–1551 (2012). DOI
Xu, L., Van Doorn, S., Hildenbrandt, H. & Etienne, R. S. Inferring the effect of species interactions on trait evolution. Syst. Biol. 70, 463–479 (2021). PubMed DOI
Tóth, A. B. et al. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science 365, 1305–1308 (2019). PubMed DOI
Luo, M., Ji, Y., Warton, D. & Yu, D. W. Extracting abundance information from DNA‐based data. Mol. Ecol. Resour. 23, 174–189 (2023). PubMed DOI
Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011). PubMed DOI PMC
Ferriere, R. & Legendre, S. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory. Phil. Trans. R. Soc. Lond. B 368, 20120081 (2013). DOI
Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. Niche Construction: The Neglected Process in Evolution (Princeton Univ. Press, 2013).
Arditti, J., Elliott, J., Kitching, I. J. & Wasserthal, L. T. ‘Good Heavens what insect can suck it’—Charles Darwin, Angraecum sesquipedale and Xanthopan morganii praedicta. Bot. J. Linn. Soc. 169, 403–432 (2012). DOI
Harvey, M. G. et al. Positive association between population genetic differentiation and speciation rates in New World birds. Proc. Natl Acad. Sci. USA 114, 6328–6333 (2017). PubMed DOI PMC
Freeman, B. G., Strimas-Mackey, M. & Miller, E. T. Interspecific competition limits bird species’ ranges in tropical mountains. Science 377, 416–420 (2022). PubMed DOI
FitzJohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012). DOI
Freeman, B. G., Rolland, J., Montgomery, G. A. & Schluter, D. Faster evolution of a premating reproductive barrier is not associated with faster speciation rates in New World passerine birds. Proc. R. Soc. B 289, 20211514 (2022). PubMed DOI PMC
Rolland, J., Schluter, D. & Romiguier, J. Vulnerability to fishing and life history traits correlate with the load of deleterious mutations in teleosts. Mol. Biol. Evol. 37, 2192–2196 (2020). PubMed DOI PMC
Ogbunugafor, C. B., Wylie, C. S., Diakite, I., Weinreich, D. M. & Hartl, D. L. Adaptive landscape by environment interactions dictate evolutionary dynamics in models of drug resistance. PLoS Comput. Biol. 12, e1004710 (2016). PubMed DOI PMC
Lewontin, R. C. The units of selection. Annu. Rev. Ecol. Evol. Syst. 1, 1–18 (1970). DOI
Pimiento, C. et al. Selective extinction against redundant species buffers functional diversity. Proc. R. Soc. B 287, 20201162 (2020). PubMed DOI PMC
Vrba, E. S. & Gould, S. J. The hierarchical expansion of sorting and selection: sorting and selection cannot be equated. Paleobiology 12, 217–228 (1986). DOI
Erwin, D. H. Macroevolution is more than repeated rounds of microevolution. Evol. Dev. 2, 78–84 (2000). PubMed DOI
Gould, S. J. Wonderful Life: The Burgess Shale and the Nature of History (WW Norton & Company, 1989).
Blount, Z. D., Lenski, R. E. & Losos, J. B. Contingency and determinism in evolution: replaying life’s tape. Science 362, eaam5979 (2018). PubMed DOI
Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296, 707–711 (2002). PubMed DOI
Uyeda, J. C., Zenil-Ferguson, R. & Pennell, M. W. Rethinking phylogenetic comparative methods. Syst. Biol. 67, 1091–1109 (2018). PubMed DOI
Li, J., Huang, J. P., Sukumaran, J. & Knowles, L. L. Microevolutionary processes impact macroevolutionary patterns. BMC Evol. Biol. 18, 123 (2018). PubMed DOI PMC
Single-fly genome assemblies fill major phylogenomic gaps across the Drosophilidae Tree of Life
Single-fly assemblies fill major phylogenomic gaps across the Drosophilidae Tree of Life