The Utilization of Cell-Penetrating Peptides in the Intracellular Delivery of Viral Nanoparticles
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
17-11397S
Grantová Agentura České Republiky
PROGRES Q26
Univerzita Karlova v Praze
SVV-260426
Univerzita Karlova v Praze
PubMed
31443361
PubMed Central
PMC6747576
DOI
10.3390/ma12172671
PII: ma12172671
Knihovny.cz E-resources
- Keywords
- cell-penetrating peptide, intracellular delivery, protein transduction domain, viral particle,
- Publication type
- Journal Article MeSH
- Review MeSH
Viral particles (VPs) have evolved so as to efficiently enter target cells and to deliver their genetic material. The current state of knowledge allows us to use VPs in the field of biomedicine as nanoparticles that are safe, easy to manipulate, inherently biocompatible, biodegradable, and capable of transporting various cargoes into specific cells. Despite the fact that these virus-based nanoparticles constitute the most common vectors used in clinical practice, the need remains for further improvement in this area. The aim of this review is to discuss the potential for enhancing the efficiency and versatility of VPs via their functionalization with cell-penetrating peptides (CPPs), short peptides that are able to translocate across cellular membranes and to transport various substances with them. The review provides and describes various examples of and means of exploitation of CPPs in order to enhance the delivery of VPs into permissive cells and/or to allow them to enter a broad range of cell types. Moreover, it is possible that CPPs are capable of changing the immunogenic properties of VPs, which could lead to an improvement in their clinical application. The review also discusses strategies aimed at the modification of VPs by CPPs so as to create a useful cargo delivery tool.
See more in PubMed
Lundstrom K. Viral Vectors in Gene Therapy. Diseases. 2018;6:42. doi: 10.3390/diseases6020042. PubMed DOI PMC
Shirbaghaee Z., Bolhassani A. Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers. 2016;105:113–132. PubMed PMC
Schwarz B., Douglas T. Development of virus-like particles for diagnostic and prophylactic biomedical applications. Wiley Interdiscip. Rev. Nanomed. NanobioTechnol. 2015;7:722–735. doi: 10.1002/wnan.1336. PubMed DOI PMC
Garcea R.L., Gissmann L. Virus-like particles as vaccines and vessels for the delivery of small molecules. Curr. Opin. Biotechnol. 2004;15:513–517. doi: 10.1016/j.copbio.2004.10.002. PubMed DOI
Grgacic E.V.L., Anderson D.A. Virus-like particles: Passport to immune recognition. Methods. 2006;40:60–65. doi: 10.1016/j.ymeth.2006.07.018. PubMed DOI PMC
Kaufman H.L., Kohlhapp F.J., Zloza A. Oncolytic viruses: A new class of immunotherapy drugs. Nat. Rev. Drug Discov. 2015;14:642–662. doi: 10.1038/nrd4663. PubMed DOI PMC
Frankel A.D., Pabo C.O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988;55:1189–1193. doi: 10.1016/0092-8674(88)90263-2. PubMed DOI
Green M., Loewenstein P.M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 1988;55:1179–1188. doi: 10.1016/0092-8674(88)90262-0. PubMed DOI
Durzyńska J., Przysiecka Ł., Nawrot R., Barylski J., Nowicki G., Warowicka A., Musidlak O., Goździcka-Józefiak A. Viral and other cell-penetrating peptides as vectors of therapeutic agents in medicine. J. Pharmacol. Exp. Ther. 2015;354:32–42. doi: 10.1124/jpet.115.223305. PubMed DOI
Agrawal P., Bhalla S., Usmani S.S., Singh S., Chaudhary K., Raghava G.P.S., Gautam A. CPPsite 2.0: A repository of experimentally validated cell-penetrating peptides. Nucleic. Acids Res. 2016;44:D1098–D1103. PubMed PMC
Langel Ü. In: CPP, Cell-Penetrating Peptides. Langel Ü., editor. Springer; Singapore: 2019.
Milletti F. Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discov. Today. 2012;17:850–860. doi: 10.1016/j.drudis.2012.03.002. PubMed DOI
Rothbard J.B., Jessop T.C., Lewis R.S., Murray B.A., Wender P.A. Role of Membrane Potential and Hydrogen Bonding in the Mechanism of Translocation of Guanidinium-Rich Peptides into Cells. J. Am. Chem. Soc. 2004;126:9506–9507. doi: 10.1021/ja0482536. PubMed DOI
Mishra A., Lai G.H., Schmidt N.W., Sun V.Z., Rodriguez A.R., Tong R., Tang L., Cheng J., Deming T.J., Kamei D.T., et al. Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc. Natl. Acad. Sci. USA. 2011;108:16883–16888. doi: 10.1073/pnas.1108795108. PubMed DOI PMC
Midoux P., Pichon C., Yaouanc J.J., Jaffrès P.A. Chemical vectors for gene delivery: A current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br. J. Pharmacol. 2009;157:166–178. doi: 10.1111/j.1476-5381.2009.00288.x. PubMed DOI PMC
Kichler A., Mason A.J., Bechinger B. Cationic amphipathic histidine-rich peptides for gene delivery. Biochim. Biophys. Acta. 2006;1758:301–307. doi: 10.1016/j.bbamem.2006.02.005. PubMed DOI
Madani F., Lindberg S., Langel Ü., Futaki S., Gräslund A. Mechanisms of Cellular Uptake of Cell-Penetrating Peptides. J. Biophys. 2011;2011:414729. doi: 10.1155/2011/414729. PubMed DOI PMC
Guidotti G., Brambilla L., Rossi D. Cell-Penetrating Peptides: From Basic Research to Clinics. Trends Pharmacol. Sci. 2017;38:406–424. doi: 10.1016/j.tips.2017.01.003. PubMed DOI
Falanga A., Galdiero M., Galdiero S. Membranotropic Cell Penetrating Peptides: The Outstanding Journey. Int. J. Mol. Sci. 2015;16:25323–25337. doi: 10.3390/ijms161025323. PubMed DOI PMC
Derossi D., Joliot A.H., Chassaing G., Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 1994;269:10444–10450. PubMed
Vivès E., Brodin P., Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 1997;272:16010–16017. doi: 10.1074/jbc.272.25.16010. PubMed DOI
Lundberg M., Wikström S., Johansson M. Cell surface adherence and endocytosis of protein transduction domains. Mol. Ther. 2003;8:143–150. doi: 10.1016/S1525-0016(03)00135-7. PubMed DOI
Drin G., Cottin S., Blanc E., Rees A.R., Temsamani J. Studies on the Internalization Mechanism of Cationic Cell-penetrating Peptides. J. Biol. Chem. 2003;278:31192–31201. doi: 10.1074/jbc.M303938200. PubMed DOI
Leifert J.A., Harkins S., Whitton J.L. Full-length proteins attached to the HIV tat protein transduction domain are neither transduced between cells, nor exhibit enhanced immunogenicity. Gene Ther. 2002;9:1422–1428. doi: 10.1038/sj.gt.3301819. PubMed DOI
Richard J.P., Melikov K., Vives E., Ramos C., Verbeure B., Gait M.J., Chernomordik L.V., Lebleu B. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 2003;278:585–590. doi: 10.1074/jbc.M209548200. PubMed DOI
Duchardt F., Fotin-Mleczek M., Schwarz H., Fischer R., Brock R. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic. 2007;8:848–866. doi: 10.1111/j.1600-0854.2007.00572.x. PubMed DOI
LeCher J.C., Nowak S.J., McMurry J.L. Breaking in and busting out: Cell-penetrating peptides and the endosomal escape problem. Biomol. Concepts. 2017;8:131–141. doi: 10.1515/bmc-2017-0023. PubMed DOI PMC
Yesylevskyy S., Marrink S.J., Mark A.E. Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers. Biophys. J. 2009;97:40–49. doi: 10.1016/j.bpj.2009.03.059. PubMed DOI PMC
Kosuge M., Takeuchi T., Nakase I., Jones A.T., Futaki S. Cellular Internalization and Distribution of Arginine-Rich Peptides as a Function of Extracellular Peptide Concentration, Serum, and Plasma Membrane Associated Proteoglycans. BioConjug. Chem. 2008;19:656–664. doi: 10.1021/bc700289w. PubMed DOI
Hirose H., Takeuchi T., Osakada H., Pujals S., Katayama S., Nakase I., Kobayashi S., Haraguchi T., Futaki S. Transient Focal Membrane Deformation Induced by Arginine-rich Peptides Leads to Their Direct Penetration into Cells. Mol. Ther. 2012;20:984–993. doi: 10.1038/mt.2011.313. PubMed DOI PMC
Futaki S., Nakase I. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization. Acc. Chem. Res. 2017;50:2449–2456. doi: 10.1021/acs.accounts.7b00221. PubMed DOI
Gao X., Hong S., Liu Z., Yue T., Dobnikar J., Zhang X. Membrane potential drives direct translocation of cell-penetrating peptides. Nanoscale. 2019;11:1949–1958. doi: 10.1039/C8NR10447F. PubMed DOI
Tünnemann G., Martin R.M., Haupt S., Patsch C., Edenhofer F., Cardoso M.C. Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB J. 2006;20:1775–1784. doi: 10.1096/fj.05-5523com. PubMed DOI
Maiolo J.R., Ferrer M., Ottinger E.A. Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides. Biochim. Biophys. Acta. 2005;1712:161–172. doi: 10.1016/j.bbamem.2005.04.010. PubMed DOI
El-Andaloussi S., Järver P., Johansson H.J., Langel U. Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: A comparative study. Biochem. J. 2007;407:285–292. doi: 10.1042/BJ20070507. PubMed DOI PMC
Mai J.C., Shen H., Watkins S.C., Cheng T., Robbins P.D. Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J. Biol. Chem. 2002;277:30208–30218. doi: 10.1074/jbc.M204202200. PubMed DOI
Mueller J., Kretzschmar I., Volkmer R., Boisguerin P. Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjug. Chem. 2008;19:2363–2374. doi: 10.1021/bc800194e. PubMed DOI
Koppelhus U., Awasthi S.K., Zachar V., Holst H.U., Ebbesen P., Nielsen P.E. Cell-Dependent Differential Cellular Uptake of PNA, Peptides, and PNA-Peptide Conjugates. Antisense Nucleic Acid Drug Dev. 2002;12:51–63. doi: 10.1089/108729002760070795. PubMed DOI
Patel S.G., Sayers E.J., He L., Narayan R., Williams T.L., Mills E.M., Allemann R.K., Luk L.Y.P., Jones A.T., Tsai Y.-H. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Sci. Rep. 2019;9:6298. doi: 10.1038/s41598-019-42456-8. PubMed DOI PMC
Birch D., Christensen M.V., Staerk D., Franzyk H., Nielsen H.M. Fluorophore labeling of a cell-penetrating peptide induces differential effects on its cellular distribution and affects cell viability. Biochim. Biophys. Acta Biomembr. 2017;1859:2483–2494. doi: 10.1016/j.bbamem.2017.09.015. PubMed DOI
Fischer R., Waizenegger T., Köhler K., Brock R. A quantitative validation of fluorophore-labelled cell-permeable peptide conjugates: Fluorophore and cargo dependence of import. Biochim. Biophys. Acta. 2002;1564:365–374. doi: 10.1016/S0005-2736(02)00471-6. PubMed DOI
Kristensen M., Birch D., Mørck Nielsen H. Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos. Int. J. Mol. Sci. 2016;17:185. doi: 10.3390/ijms17020185. PubMed DOI PMC
Piovan C., Marin V., Scavullo C., Corna S., Giuliani E., Bossi S., Galy A., Fenard D., Bordignon C., Rizzardi G.P., et al. Vectofusin-1 Promotes RD114-TR-Pseudotyped Lentiviral Vector Transduction of Human HSPCs and T Lymphocytes. Mol. Ther. Methods Clin. Dev. 2017;5:22–30. doi: 10.1016/j.omtm.2017.02.003. PubMed DOI PMC
Youn J.I., Park S.H., Jin H.T., Lee C.G., Seo S.H., Song M.Y., Lee C.W., Sung Y.C. Enhanced delivery efficiency of recombinant adenovirus into tumor and mesenchymal stem cells by a novel PTD. Cancer Gene Ther. 2008;15:703–712. doi: 10.1038/cgt.2008.45. PubMed DOI
Fenard D., Genries S., Scherman D., Galy A., Martin S., Kichler A. Infectivity enhancement of different HIV-1-based lentiviral pseudotypes in presence of the cationic amphipathic peptide LAH4-L1. J. Virol. Methods. 2013;189:375–378. doi: 10.1016/j.jviromet.2013.02.005. PubMed DOI
Gratton J.P., Yu J., Griffith J.W., Babbitt R.W., Scotland R.S., Hickey R., Giordano F.J., Sessa W.C. Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nat. Med. 2003;9:357–362. doi: 10.1038/nm835. PubMed DOI
Liu Y., Kim Y.J., Ji M., Fang J., Siriwon N., Zhang L., Wang P. Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides. Mol. Ther. Methods Clin. Dev. 2014;1:12. doi: 10.1038/mtm.2013.12. PubMed DOI PMC
Park S.H., Doh J., Park S., Lim J.Y., Kim S.M., Youn J.I., Jin H.T., Seo S.H., Song M.Y., Sung S.Y., et al. Branched oligomerization of cell-permeable peptides markedly enhances the transduction efficiency of adenovirus into mesenchymal stem cells. Gene Ther. 2010;17:1052–1061. doi: 10.1038/gt.2010.58. PubMed DOI
Jamali A., Kapitza L., Schaser T., Johnston I.C., Buchholz C.J., Hartmann J. Highly Efficient and Selective CAR-Gene Transfer Using CD4 and CD8-Targeted Lentiviral Vectors. Mol. Ther. Methods Clin. Dev. 2019;13:371–379. doi: 10.1016/j.omtm.2019.03.003. PubMed DOI PMC
Kühnel F., Schulte B., Wirth T., Woller N., Schäfers S., Zender L., Manns M., Kubicka S. Protein Transduction Domains Fused to Virus Receptors Improve Cellular Virus Uptake and Enhance Oncolysis by Tumor-Specific Replicating Vectors. J. Virol. 2004;78:13743–13754. doi: 10.1128/JVI.78.24.13743-13754.2004. PubMed DOI PMC
Fenard D., Ingrao D., Seye A., Buisset J., Genries S., Martin S., Kichler A., Galy A. Vectofusin-1, a New Viral Entry Enhancer, Strongly Promotes Lentiviral Transduction of Human Hematopoietic Stem Cells. Mol. Ther. Nucleic Acids. 2013;2:e90. doi: 10.1038/mtna.2013.17. PubMed DOI PMC
Lehmusvaara S., Rautsi O., Hakkarainen T., Wahlfors J. Utility of cell-permeable peptides for enhancement of virus-mediated gene transfer to human tumor cells. BioTechniques. 2006;40:573–576. doi: 10.2144/000112152. PubMed DOI
Posey N.D., Tew G.N. Associative and Dissociative Processes in Non-Covalent Polymer-Mediated Intracellular Protein Delivery. Chem. Asian J. 2018;13:3351–3365. doi: 10.1002/asia.201800849. PubMed DOI
Elliott G., O’Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell. 1997;88:223–233. doi: 10.1016/S0092-8674(00)81843-7. PubMed DOI
Han T., Tang Y., Ugai H., Perry L., Siegal G.P., Contreras J.L., Wu H. Genetic incorporation of the protein transduction domain of Tat into Ad5 fiber enhances gene transfer efficacy. Virol. J. 2007;4:103. doi: 10.1186/1743-422X-4-103. PubMed DOI PMC
Kurachi S., Tashiro K., Sakurai F., Sakurai H., Kawabata K., Yayama K., Okamoto H., Nakagawa S., Mizuguchi H. Fiber-modified adenovirus vectors containing the TAT peptide derived from HIV-1 in the fiber knob have efficient gene transfer activity. Gene Ther. 2007;14:1160–1165. doi: 10.1038/sj.gt.3302969. PubMed DOI
Liu S., Mao Q., Zhang W., Zheng X., Bian Y., Wang D., Li H., Chai L., Zhao J., Xia H. Genetically modified adenoviral vector with the protein transduction domain of Tat improves gene transfer to CAR-deficient cells. Biosci. Rep. 2009;29:103–109. doi: 10.1042/BSR20080023. PubMed DOI PMC
Yu D., Jin C., Leja J., Majdalani N., Nilsson B., Eriksson F., Essand M. Adenovirus with Hexon Tat-Protein Transduction Domain Modification Exhibits Increased Therapeutic Effect in Experimental Neuroblastoma and Neuroendocrine Tumors. J. Virol. 2011;85:13114–13123. doi: 10.1128/JVI.05759-11. PubMed DOI PMC
Chen H.Z., Wu C.P., Chao Y.C., Liu C.Y.Y. Membrane penetrating peptides greatly enhance baculovirus transduction efficiency into mammalian cells. Biochem. Biophys. Res. Commun. 2011;405:297–302. doi: 10.1016/j.bbrc.2011.01.032. PubMed DOI PMC
Sun Y., Sun Y., Zhao R. Establishment of MicroRNA delivery system by PP7 bacteriophage-like particles carrying cell-penetrating peptide. J. Biosci. Bioeng. 2017;124:242–249. doi: 10.1016/j.jbiosc.2017.03.012. PubMed DOI
Sun Y., Sun Y., Zhao R., Gao K. Intracellular delivery of messenger RNA by recombinant PP7 virus-like particles carrying low molecular weight protamine. BMC Biotechnol. 2016;16:3020. doi: 10.1186/s12896-016-0274-9. PubMed DOI PMC
Wang G., Jia T., Xu X., Chang L., Zhang R., Fu Y., Li Y., Yang X., Zhang K., Lin G., et al. Novel miR-122 delivery system based on MS2 virus like particle surface displaying cell-penetrating peptide TAT for hepatocellular carcinoma. Oncotarget. 2016;7:59402–59416. doi: 10.18632/oncotarget.10681. PubMed DOI PMC
Eguchi A., Akuta T., Okuyama H., Senda T., Yokoi H., Inokuchi H., Fujita S., Hayakawa T., Takeda K., Hasegawa M., et al. Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J. Biol. Chem. 2001;276:26204–26210. doi: 10.1074/jbc.M010625200. PubMed DOI
Rohovie M.J., Nagasawa M., Swartz J.R. Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery. Bioeng. Transl. Med. 2017;2:43–57. doi: 10.1002/btm2.10049. PubMed DOI PMC
Yoshioka Y., Asavatanabodee R., Eto Y., Watanabe H., Morishige T., Yao X., Kida S., Maeda M., Mukai Y., Mizuguchi H., et al. Tat conjugation of adenovirus vector broadens tropism and enhances transduction efficiency. Life Sci. 2008;83:747–755. doi: 10.1016/j.lfs.2008.09.022. PubMed DOI
Eto Y., Yoshioka Y., Asavatanabodee R., Kida S., Maeda M., Mukai Y., Mizuguchi H., Kawasaki K., Okada N., Nakagawa S. Transduction of adenovirus vectors modified with cell-penetrating peptides. Peptides. 2009;30:1548–1552. doi: 10.1016/j.peptides.2009.05.017. PubMed DOI
Nigatu A.S., Vupputuri S., Flynn N., Ramsey J.D. Effects of cell-penetrating peptides on transduction efficiency of PEGylated adenovirus. Biomed. Pharmacother. 2015;71:153–160. doi: 10.1016/j.biopha.2015.02.015. PubMed DOI
Wu Z., Chen K., Yildiz I., Dirksen A., Fischer R., Dawson P.E., Steinmetz N.F. Development of viral nanoparticles for efficient intracellular delivery. Nanoscale. 2012;4:3567–3576. doi: 10.1039/c2nr30366c. PubMed DOI PMC
Gan B.K., Yong C.Y., Ho K.L., Omar A.R., Alitheen N.B., Tan W.S. Targeted Delivery of Cell Penetrating Peptide Virus-like Nanoparticles to Skin Cancer Cells. Sci. Rep. 2018;8:8499. doi: 10.1038/s41598-018-26749-y. PubMed DOI PMC
Pan Y., Zhang Y., Jia T., Zhang K., Li J., Wang L. Development of a microRNA delivery system based on bacteriophage MS2 virus-like particles. FEBS J. 2012;279:1198–1208. doi: 10.1111/j.1742-4658.2012.08512.x. PubMed DOI
Wei B., Wei Y., Zhang K., Wang J., Xu R., Zhan S., Lin G., Wang W., Liu M., Wang L., et al. Development of an antisense RNA delivery system using conjugates of the MS2 bacteriophage capsids and HIV-1 TAT cell-penetrating peptide. Biomed. Pharmacother. 2009;63:313–318. doi: 10.1016/j.biopha.2008.07.086. PubMed DOI
Anand P., O’Neil A., Lin E., Douglas T., Holford M. Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers. Sci. Rep. 2015;5:12497. doi: 10.1038/srep12497. PubMed DOI PMC
Pang H.H., Chen P.Y., Wei K.C., Huang C.-W., Shiue Y.L., Huang C.Y., Yang H.W. Convection-Enhanced Delivery of a Virus-Like Nanotherapeutic Agent with Dual-Modal Imaging for Besiegement and Eradication of Brain Tumors. Theranostics. 2019;9:1752–1763. doi: 10.7150/thno.30977. PubMed DOI PMC
Kim D., Lee Y., Dreher T.W., Cho T.J. Empty Turnip yellow mosaic virus capsids as delivery vehicles to mammalian cells. Virus Res. 2018;252:13–21. doi: 10.1016/j.virusres.2018.05.004. PubMed DOI
Salerno J.C., Ngwa V.M., Nowak S.J., Chrestensen C.A., Healey A.N., McMurry J.L. Novel cell-penetrating peptide-adaptors effect intracellular delivery and endosomal escape of protein cargos. J. Cell Sci. 2016;129:893–897. doi: 10.1242/jcs.182113. PubMed DOI PMC
Koudelka K.J., Destito G., Plummer E.M., Trauger S.A., Siuzdak G., Manchester M. Endothelial Targeting of Cowpea Mosaic Virus (CPMV) via Surface Vimentin. PLoS Pathog. 2009;5:e1000417. doi: 10.1371/journal.ppat.1000417. PubMed DOI PMC
Mansouri M., Berger P. Baculovirus for gene delivery to mammalian cells: Past, present and future. Plasmid. 2018;98:1–7. doi: 10.1016/j.plasmid.2018.05.002. PubMed DOI
Reeh M., Bockhorn M., Görgens D., Vieth M., Hoffmann T., Simon R., Izbicki J.R., Sauter G., Schumacher U., Anders M. Presence of the Coxsackievirus and Adenovirus Receptor (CAR) in human neoplasms: A multitumour array analysis. Br. J. Cancer. 2013;109:1848–1858. doi: 10.1038/bjc.2013.509. PubMed DOI PMC
Wirth T., Zender L., Schulte B., Mundt B., Plentz R., Rudolph K.L., Manns M., Kubicka S., Kühnel F. A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res. 2003;63:3181–3188. PubMed
Rebetz J., Na M., Su C., Holmqvist B., Edqvist A., Nyberg C., Widegren B., Salford L.G., Sjögren H.O., Arnberg N., et al. Fiber Mediated Receptor Masking in Non-Infected Bystander Cells Restricts Adenovirus Cell Killing Effect but Promotes Adenovirus Host Co-Existence. PLoS ONE. 2009;4:e8484. doi: 10.1371/journal.pone.0008484. PubMed DOI PMC
Waddington S.N., McVey J.H., Bhella D., Parker A.L., Barker K., Atoda H., Pink R., Buckley S.M., Greig J.A., Denby L., et al. Adenovirus Serotype 5 Hexon Mediates Liver Gene Transfer. Cell. 2008;132:397–409. doi: 10.1016/j.cell.2008.01.016. PubMed DOI
Vermeer L.S., Hamon L., Schirer A., Schoup M., Cosette J., Majdoul S., Pastré D., Stockholm D., Holic N., Hellwig P., et al. Vectofusin-1, a potent peptidic enhancer of viral gene transfer forms pH-dependent α-helical nanofibrils, concentrating viral particles. Acta Biomater. 2017;64:259–268. doi: 10.1016/j.actbio.2017.10.009. PubMed DOI
Kim P.H., Kim T.I., Yockman J.W., Kim S.W., Yun C.O. The effect of surface modification of adenovirus with an arginine-grafted bioreducible polymer on transduction efficiency and immunogenicity in cancer gene therapy. Biomaterials. 2010;31:1865–1874. doi: 10.1016/j.biomaterials.2009.11.043. PubMed DOI
Rubsamen R., Herst C., Lloyd P., Heckerman D. Eliciting cytotoxic T-lymphocyte responses from synthetic vectors containing one or two epitopes in a C57BL/6 mouse model using peptide-containing biodegradable microspheres and adjuvants. Vaccine. 2014;32:4111–4116. doi: 10.1016/j.vaccine.2014.05.071. PubMed DOI
Grau M., Walker P.R., Derouazi M. Mechanistic insights into the efficacy of cell penetrating peptide-based cancer vaccines. Cell. Mol. Life Sci. 2018;75:2887–2896. doi: 10.1007/s00018-018-2785-0. PubMed DOI PMC
Schumacher T., Ruehland C., Schultheiss C., Brinkman M., Roedel F., Reiser C.O.A., Hess J., Reichel C. Advanced Antigen Delivery of Murine Survivin: Chimeric Virus-Like Particles in Cancer Vaccine Research. Int. J. Biomed. Sci. IJBS. 2007;3:199–205. PubMed PMC
Zhang T.T., Kang T.H., Ma B., Xu Y., Hung C.F., Wu T.C. LAH4 enhances CD8+ T cell immunity of protein/peptide-based vaccines. Vaccine. 2012;30:784–793. doi: 10.1016/j.vaccine.2011.11.056. PubMed DOI PMC
Wang H.Y., Wang R.F. Enhancing cancer immunotherapy by intracellular delivery of cell-penetrating peptides and stimulation of pattern-recognition receptor signaling. Adv. Immunol. 2012;114:151–176. PubMed PMC
Brooks N.A., Pouniotis D.S., Tang C.K., Apostolopoulos V., Pietersz G.A. Cell-penetrating peptides: Application in vaccine delivery. Biochim. Biophys. Acta. 2010;1805:25–34. doi: 10.1016/j.bbcan.2009.09.004. PubMed DOI
Sahdev P., Ochyl L.J., Moon J.J. Biomaterials for nanoparticle vaccine delivery systems. Pharm. Res. 2014;31:2563–2582. doi: 10.1007/s11095-014-1419-y. PubMed DOI PMC
Nakamura T., Moriguchi R., Kogure K., Shastri N., Harashima H. Efficient MHC class I presentation by controlled intracellular trafficking of antigens in octaarginine-modified liposomes. Mol. Ther. 2008;16:1507–1514. doi: 10.1038/mt.2008.122. PubMed DOI
Akhras S., Toda M., Boller K., Himmelsbach K., Elgner F., Biehl M., Scheurer S., Gratz M., Vieths S., Hildt E. Cell-permeable capsids as universal antigen carrier for the induction of an antigen-specific CD8+ T-cell response. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-08787-0. PubMed DOI PMC
Qin H., Ding Y., Mujeeb A., Zhao Y., Nie G. Tumor Microenvironment Targeting and Responsive Peptide-Based Nanoformulations for Improved Tumor Therapy. Mol. Pharmacol. 2017;92:219–231. doi: 10.1124/mol.116.108084. PubMed DOI
Cerrato C.P., Künnapuu K., Langel Ü. Cell-penetrating peptides with intracellular organelle targeting. Expert Opin. Drug Deliv. 2017;14:245–255. doi: 10.1080/17425247.2016.1213237. PubMed DOI
Collado Camps E., Brock R. An opportunistic route to success: Towards a change of paradigm to fully exploit the potential of cell-penetrating peptides. Bioorg. Med. Chem. 2018;26:2780–2787. doi: 10.1016/j.bmc.2017.11.004. PubMed DOI
Habault J., Poyet J.L. Recent Advances in Cell Penetrating Peptide-Based Anticancer Therapies. Molecules. 2019;24:927. doi: 10.3390/molecules24050927. PubMed DOI PMC