• This record comes from PubMed

The Utilization of Cell-Penetrating Peptides in the Intracellular Delivery of Viral Nanoparticles

. 2019 Aug 22 ; 12 (17) : . [epub] 20190822

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
17-11397S Grantová Agentura České Republiky
PROGRES Q26 Univerzita Karlova v Praze
SVV-260426 Univerzita Karlova v Praze

Viral particles (VPs) have evolved so as to efficiently enter target cells and to deliver their genetic material. The current state of knowledge allows us to use VPs in the field of biomedicine as nanoparticles that are safe, easy to manipulate, inherently biocompatible, biodegradable, and capable of transporting various cargoes into specific cells. Despite the fact that these virus-based nanoparticles constitute the most common vectors used in clinical practice, the need remains for further improvement in this area. The aim of this review is to discuss the potential for enhancing the efficiency and versatility of VPs via their functionalization with cell-penetrating peptides (CPPs), short peptides that are able to translocate across cellular membranes and to transport various substances with them. The review provides and describes various examples of and means of exploitation of CPPs in order to enhance the delivery of VPs into permissive cells and/or to allow them to enter a broad range of cell types. Moreover, it is possible that CPPs are capable of changing the immunogenic properties of VPs, which could lead to an improvement in their clinical application. The review also discusses strategies aimed at the modification of VPs by CPPs so as to create a useful cargo delivery tool.

See more in PubMed

Lundstrom K. Viral Vectors in Gene Therapy. Diseases. 2018;6:42. doi: 10.3390/diseases6020042. PubMed DOI PMC

Shirbaghaee Z., Bolhassani A. Different applications of virus-like particles in biology and medicine: Vaccination and delivery systems. Biopolymers. 2016;105:113–132. PubMed PMC

Schwarz B., Douglas T. Development of virus-like particles for diagnostic and prophylactic biomedical applications. Wiley Interdiscip. Rev. Nanomed. NanobioTechnol. 2015;7:722–735. doi: 10.1002/wnan.1336. PubMed DOI PMC

Garcea R.L., Gissmann L. Virus-like particles as vaccines and vessels for the delivery of small molecules. Curr. Opin. Biotechnol. 2004;15:513–517. doi: 10.1016/j.copbio.2004.10.002. PubMed DOI

Grgacic E.V.L., Anderson D.A. Virus-like particles: Passport to immune recognition. Methods. 2006;40:60–65. doi: 10.1016/j.ymeth.2006.07.018. PubMed DOI PMC

Kaufman H.L., Kohlhapp F.J., Zloza A. Oncolytic viruses: A new class of immunotherapy drugs. Nat. Rev. Drug Discov. 2015;14:642–662. doi: 10.1038/nrd4663. PubMed DOI PMC

Frankel A.D., Pabo C.O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell. 1988;55:1189–1193. doi: 10.1016/0092-8674(88)90263-2. PubMed DOI

Green M., Loewenstein P.M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell. 1988;55:1179–1188. doi: 10.1016/0092-8674(88)90262-0. PubMed DOI

Durzyńska J., Przysiecka Ł., Nawrot R., Barylski J., Nowicki G., Warowicka A., Musidlak O., Goździcka-Józefiak A. Viral and other cell-penetrating peptides as vectors of therapeutic agents in medicine. J. Pharmacol. Exp. Ther. 2015;354:32–42. doi: 10.1124/jpet.115.223305. PubMed DOI

Agrawal P., Bhalla S., Usmani S.S., Singh S., Chaudhary K., Raghava G.P.S., Gautam A. CPPsite 2.0: A repository of experimentally validated cell-penetrating peptides. Nucleic. Acids Res. 2016;44:D1098–D1103. PubMed PMC

Langel Ü. In: CPP, Cell-Penetrating Peptides. Langel Ü., editor. Springer; Singapore: 2019.

Milletti F. Cell-penetrating peptides: Classes, origin, and current landscape. Drug Discov. Today. 2012;17:850–860. doi: 10.1016/j.drudis.2012.03.002. PubMed DOI

Rothbard J.B., Jessop T.C., Lewis R.S., Murray B.A., Wender P.A. Role of Membrane Potential and Hydrogen Bonding in the Mechanism of Translocation of Guanidinium-Rich Peptides into Cells. J. Am. Chem. Soc. 2004;126:9506–9507. doi: 10.1021/ja0482536. PubMed DOI

Mishra A., Lai G.H., Schmidt N.W., Sun V.Z., Rodriguez A.R., Tong R., Tang L., Cheng J., Deming T.J., Kamei D.T., et al. Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc. Natl. Acad. Sci. USA. 2011;108:16883–16888. doi: 10.1073/pnas.1108795108. PubMed DOI PMC

Midoux P., Pichon C., Yaouanc J.J., Jaffrès P.A. Chemical vectors for gene delivery: A current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br. J. Pharmacol. 2009;157:166–178. doi: 10.1111/j.1476-5381.2009.00288.x. PubMed DOI PMC

Kichler A., Mason A.J., Bechinger B. Cationic amphipathic histidine-rich peptides for gene delivery. Biochim. Biophys. Acta. 2006;1758:301–307. doi: 10.1016/j.bbamem.2006.02.005. PubMed DOI

Madani F., Lindberg S., Langel Ü., Futaki S., Gräslund A. Mechanisms of Cellular Uptake of Cell-Penetrating Peptides. J. Biophys. 2011;2011:414729. doi: 10.1155/2011/414729. PubMed DOI PMC

Guidotti G., Brambilla L., Rossi D. Cell-Penetrating Peptides: From Basic Research to Clinics. Trends Pharmacol. Sci. 2017;38:406–424. doi: 10.1016/j.tips.2017.01.003. PubMed DOI

Falanga A., Galdiero M., Galdiero S. Membranotropic Cell Penetrating Peptides: The Outstanding Journey. Int. J. Mol. Sci. 2015;16:25323–25337. doi: 10.3390/ijms161025323. PubMed DOI PMC

Derossi D., Joliot A.H., Chassaing G., Prochiantz A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem. 1994;269:10444–10450. PubMed

Vivès E., Brodin P., Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 1997;272:16010–16017. doi: 10.1074/jbc.272.25.16010. PubMed DOI

Lundberg M., Wikström S., Johansson M. Cell surface adherence and endocytosis of protein transduction domains. Mol. Ther. 2003;8:143–150. doi: 10.1016/S1525-0016(03)00135-7. PubMed DOI

Drin G., Cottin S., Blanc E., Rees A.R., Temsamani J. Studies on the Internalization Mechanism of Cationic Cell-penetrating Peptides. J. Biol. Chem. 2003;278:31192–31201. doi: 10.1074/jbc.M303938200. PubMed DOI

Leifert J.A., Harkins S., Whitton J.L. Full-length proteins attached to the HIV tat protein transduction domain are neither transduced between cells, nor exhibit enhanced immunogenicity. Gene Ther. 2002;9:1422–1428. doi: 10.1038/sj.gt.3301819. PubMed DOI

Richard J.P., Melikov K., Vives E., Ramos C., Verbeure B., Gait M.J., Chernomordik L.V., Lebleu B. Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 2003;278:585–590. doi: 10.1074/jbc.M209548200. PubMed DOI

Duchardt F., Fotin-Mleczek M., Schwarz H., Fischer R., Brock R. A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic. 2007;8:848–866. doi: 10.1111/j.1600-0854.2007.00572.x. PubMed DOI

LeCher J.C., Nowak S.J., McMurry J.L. Breaking in and busting out: Cell-penetrating peptides and the endosomal escape problem. Biomol. Concepts. 2017;8:131–141. doi: 10.1515/bmc-2017-0023. PubMed DOI PMC

Yesylevskyy S., Marrink S.J., Mark A.E. Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers. Biophys. J. 2009;97:40–49. doi: 10.1016/j.bpj.2009.03.059. PubMed DOI PMC

Kosuge M., Takeuchi T., Nakase I., Jones A.T., Futaki S. Cellular Internalization and Distribution of Arginine-Rich Peptides as a Function of Extracellular Peptide Concentration, Serum, and Plasma Membrane Associated Proteoglycans. BioConjug. Chem. 2008;19:656–664. doi: 10.1021/bc700289w. PubMed DOI

Hirose H., Takeuchi T., Osakada H., Pujals S., Katayama S., Nakase I., Kobayashi S., Haraguchi T., Futaki S. Transient Focal Membrane Deformation Induced by Arginine-rich Peptides Leads to Their Direct Penetration into Cells. Mol. Ther. 2012;20:984–993. doi: 10.1038/mt.2011.313. PubMed DOI PMC

Futaki S., Nakase I. Cell-Surface Interactions on Arginine-Rich Cell-Penetrating Peptides Allow for Multiplex Modes of Internalization. Acc. Chem. Res. 2017;50:2449–2456. doi: 10.1021/acs.accounts.7b00221. PubMed DOI

Gao X., Hong S., Liu Z., Yue T., Dobnikar J., Zhang X. Membrane potential drives direct translocation of cell-penetrating peptides. Nanoscale. 2019;11:1949–1958. doi: 10.1039/C8NR10447F. PubMed DOI

Tünnemann G., Martin R.M., Haupt S., Patsch C., Edenhofer F., Cardoso M.C. Cargo-dependent mode of uptake and bioavailability of TAT-containing proteins and peptides in living cells. FASEB J. 2006;20:1775–1784. doi: 10.1096/fj.05-5523com. PubMed DOI

Maiolo J.R., Ferrer M., Ottinger E.A. Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides. Biochim. Biophys. Acta. 2005;1712:161–172. doi: 10.1016/j.bbamem.2005.04.010. PubMed DOI

El-Andaloussi S., Järver P., Johansson H.J., Langel U. Cargo-dependent cytotoxicity and delivery efficacy of cell-penetrating peptides: A comparative study. Biochem. J. 2007;407:285–292. doi: 10.1042/BJ20070507. PubMed DOI PMC

Mai J.C., Shen H., Watkins S.C., Cheng T., Robbins P.D. Efficiency of protein transduction is cell type-dependent and is enhanced by dextran sulfate. J. Biol. Chem. 2002;277:30208–30218. doi: 10.1074/jbc.M204202200. PubMed DOI

Mueller J., Kretzschmar I., Volkmer R., Boisguerin P. Comparison of cellular uptake using 22 CPPs in 4 different cell lines. Bioconjug. Chem. 2008;19:2363–2374. doi: 10.1021/bc800194e. PubMed DOI

Koppelhus U., Awasthi S.K., Zachar V., Holst H.U., Ebbesen P., Nielsen P.E. Cell-Dependent Differential Cellular Uptake of PNA, Peptides, and PNA-Peptide Conjugates. Antisense Nucleic Acid Drug Dev. 2002;12:51–63. doi: 10.1089/108729002760070795. PubMed DOI

Patel S.G., Sayers E.J., He L., Narayan R., Williams T.L., Mills E.M., Allemann R.K., Luk L.Y.P., Jones A.T., Tsai Y.-H. Cell-penetrating peptide sequence and modification dependent uptake and subcellular distribution of green florescent protein in different cell lines. Sci. Rep. 2019;9:6298. doi: 10.1038/s41598-019-42456-8. PubMed DOI PMC

Birch D., Christensen M.V., Staerk D., Franzyk H., Nielsen H.M. Fluorophore labeling of a cell-penetrating peptide induces differential effects on its cellular distribution and affects cell viability. Biochim. Biophys. Acta Biomembr. 2017;1859:2483–2494. doi: 10.1016/j.bbamem.2017.09.015. PubMed DOI

Fischer R., Waizenegger T., Köhler K., Brock R. A quantitative validation of fluorophore-labelled cell-permeable peptide conjugates: Fluorophore and cargo dependence of import. Biochim. Biophys. Acta. 2002;1564:365–374. doi: 10.1016/S0005-2736(02)00471-6. PubMed DOI

Kristensen M., Birch D., Mørck Nielsen H. Applications and Challenges for Use of Cell-Penetrating Peptides as Delivery Vectors for Peptide and Protein Cargos. Int. J. Mol. Sci. 2016;17:185. doi: 10.3390/ijms17020185. PubMed DOI PMC

Piovan C., Marin V., Scavullo C., Corna S., Giuliani E., Bossi S., Galy A., Fenard D., Bordignon C., Rizzardi G.P., et al. Vectofusin-1 Promotes RD114-TR-Pseudotyped Lentiviral Vector Transduction of Human HSPCs and T Lymphocytes. Mol. Ther. Methods Clin. Dev. 2017;5:22–30. doi: 10.1016/j.omtm.2017.02.003. PubMed DOI PMC

Youn J.I., Park S.H., Jin H.T., Lee C.G., Seo S.H., Song M.Y., Lee C.W., Sung Y.C. Enhanced delivery efficiency of recombinant adenovirus into tumor and mesenchymal stem cells by a novel PTD. Cancer Gene Ther. 2008;15:703–712. doi: 10.1038/cgt.2008.45. PubMed DOI

Fenard D., Genries S., Scherman D., Galy A., Martin S., Kichler A. Infectivity enhancement of different HIV-1-based lentiviral pseudotypes in presence of the cationic amphipathic peptide LAH4-L1. J. Virol. Methods. 2013;189:375–378. doi: 10.1016/j.jviromet.2013.02.005. PubMed DOI

Gratton J.P., Yu J., Griffith J.W., Babbitt R.W., Scotland R.S., Hickey R., Giordano F.J., Sessa W.C. Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nat. Med. 2003;9:357–362. doi: 10.1038/nm835. PubMed DOI

Liu Y., Kim Y.J., Ji M., Fang J., Siriwon N., Zhang L., Wang P. Enhancing gene delivery of adeno-associated viruses by cell-permeable peptides. Mol. Ther. Methods Clin. Dev. 2014;1:12. doi: 10.1038/mtm.2013.12. PubMed DOI PMC

Park S.H., Doh J., Park S., Lim J.Y., Kim S.M., Youn J.I., Jin H.T., Seo S.H., Song M.Y., Sung S.Y., et al. Branched oligomerization of cell-permeable peptides markedly enhances the transduction efficiency of adenovirus into mesenchymal stem cells. Gene Ther. 2010;17:1052–1061. doi: 10.1038/gt.2010.58. PubMed DOI

Jamali A., Kapitza L., Schaser T., Johnston I.C., Buchholz C.J., Hartmann J. Highly Efficient and Selective CAR-Gene Transfer Using CD4 and CD8-Targeted Lentiviral Vectors. Mol. Ther. Methods Clin. Dev. 2019;13:371–379. doi: 10.1016/j.omtm.2019.03.003. PubMed DOI PMC

Kühnel F., Schulte B., Wirth T., Woller N., Schäfers S., Zender L., Manns M., Kubicka S. Protein Transduction Domains Fused to Virus Receptors Improve Cellular Virus Uptake and Enhance Oncolysis by Tumor-Specific Replicating Vectors. J. Virol. 2004;78:13743–13754. doi: 10.1128/JVI.78.24.13743-13754.2004. PubMed DOI PMC

Fenard D., Ingrao D., Seye A., Buisset J., Genries S., Martin S., Kichler A., Galy A. Vectofusin-1, a New Viral Entry Enhancer, Strongly Promotes Lentiviral Transduction of Human Hematopoietic Stem Cells. Mol. Ther. Nucleic Acids. 2013;2:e90. doi: 10.1038/mtna.2013.17. PubMed DOI PMC

Lehmusvaara S., Rautsi O., Hakkarainen T., Wahlfors J. Utility of cell-permeable peptides for enhancement of virus-mediated gene transfer to human tumor cells. BioTechniques. 2006;40:573–576. doi: 10.2144/000112152. PubMed DOI

Posey N.D., Tew G.N. Associative and Dissociative Processes in Non-Covalent Polymer-Mediated Intracellular Protein Delivery. Chem. Asian J. 2018;13:3351–3365. doi: 10.1002/asia.201800849. PubMed DOI

Elliott G., O’Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell. 1997;88:223–233. doi: 10.1016/S0092-8674(00)81843-7. PubMed DOI

Han T., Tang Y., Ugai H., Perry L., Siegal G.P., Contreras J.L., Wu H. Genetic incorporation of the protein transduction domain of Tat into Ad5 fiber enhances gene transfer efficacy. Virol. J. 2007;4:103. doi: 10.1186/1743-422X-4-103. PubMed DOI PMC

Kurachi S., Tashiro K., Sakurai F., Sakurai H., Kawabata K., Yayama K., Okamoto H., Nakagawa S., Mizuguchi H. Fiber-modified adenovirus vectors containing the TAT peptide derived from HIV-1 in the fiber knob have efficient gene transfer activity. Gene Ther. 2007;14:1160–1165. doi: 10.1038/sj.gt.3302969. PubMed DOI

Liu S., Mao Q., Zhang W., Zheng X., Bian Y., Wang D., Li H., Chai L., Zhao J., Xia H. Genetically modified adenoviral vector with the protein transduction domain of Tat improves gene transfer to CAR-deficient cells. Biosci. Rep. 2009;29:103–109. doi: 10.1042/BSR20080023. PubMed DOI PMC

Yu D., Jin C., Leja J., Majdalani N., Nilsson B., Eriksson F., Essand M. Adenovirus with Hexon Tat-Protein Transduction Domain Modification Exhibits Increased Therapeutic Effect in Experimental Neuroblastoma and Neuroendocrine Tumors. J. Virol. 2011;85:13114–13123. doi: 10.1128/JVI.05759-11. PubMed DOI PMC

Chen H.Z., Wu C.P., Chao Y.C., Liu C.Y.Y. Membrane penetrating peptides greatly enhance baculovirus transduction efficiency into mammalian cells. Biochem. Biophys. Res. Commun. 2011;405:297–302. doi: 10.1016/j.bbrc.2011.01.032. PubMed DOI PMC

Sun Y., Sun Y., Zhao R. Establishment of MicroRNA delivery system by PP7 bacteriophage-like particles carrying cell-penetrating peptide. J. Biosci. Bioeng. 2017;124:242–249. doi: 10.1016/j.jbiosc.2017.03.012. PubMed DOI

Sun Y., Sun Y., Zhao R., Gao K. Intracellular delivery of messenger RNA by recombinant PP7 virus-like particles carrying low molecular weight protamine. BMC Biotechnol. 2016;16:3020. doi: 10.1186/s12896-016-0274-9. PubMed DOI PMC

Wang G., Jia T., Xu X., Chang L., Zhang R., Fu Y., Li Y., Yang X., Zhang K., Lin G., et al. Novel miR-122 delivery system based on MS2 virus like particle surface displaying cell-penetrating peptide TAT for hepatocellular carcinoma. Oncotarget. 2016;7:59402–59416. doi: 10.18632/oncotarget.10681. PubMed DOI PMC

Eguchi A., Akuta T., Okuyama H., Senda T., Yokoi H., Inokuchi H., Fujita S., Hayakawa T., Takeda K., Hasegawa M., et al. Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J. Biol. Chem. 2001;276:26204–26210. doi: 10.1074/jbc.M010625200. PubMed DOI

Rohovie M.J., Nagasawa M., Swartz J.R. Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery. Bioeng. Transl. Med. 2017;2:43–57. doi: 10.1002/btm2.10049. PubMed DOI PMC

Yoshioka Y., Asavatanabodee R., Eto Y., Watanabe H., Morishige T., Yao X., Kida S., Maeda M., Mukai Y., Mizuguchi H., et al. Tat conjugation of adenovirus vector broadens tropism and enhances transduction efficiency. Life Sci. 2008;83:747–755. doi: 10.1016/j.lfs.2008.09.022. PubMed DOI

Eto Y., Yoshioka Y., Asavatanabodee R., Kida S., Maeda M., Mukai Y., Mizuguchi H., Kawasaki K., Okada N., Nakagawa S. Transduction of adenovirus vectors modified with cell-penetrating peptides. Peptides. 2009;30:1548–1552. doi: 10.1016/j.peptides.2009.05.017. PubMed DOI

Nigatu A.S., Vupputuri S., Flynn N., Ramsey J.D. Effects of cell-penetrating peptides on transduction efficiency of PEGylated adenovirus. Biomed. Pharmacother. 2015;71:153–160. doi: 10.1016/j.biopha.2015.02.015. PubMed DOI

Wu Z., Chen K., Yildiz I., Dirksen A., Fischer R., Dawson P.E., Steinmetz N.F. Development of viral nanoparticles for efficient intracellular delivery. Nanoscale. 2012;4:3567–3576. doi: 10.1039/c2nr30366c. PubMed DOI PMC

Gan B.K., Yong C.Y., Ho K.L., Omar A.R., Alitheen N.B., Tan W.S. Targeted Delivery of Cell Penetrating Peptide Virus-like Nanoparticles to Skin Cancer Cells. Sci. Rep. 2018;8:8499. doi: 10.1038/s41598-018-26749-y. PubMed DOI PMC

Pan Y., Zhang Y., Jia T., Zhang K., Li J., Wang L. Development of a microRNA delivery system based on bacteriophage MS2 virus-like particles. FEBS J. 2012;279:1198–1208. doi: 10.1111/j.1742-4658.2012.08512.x. PubMed DOI

Wei B., Wei Y., Zhang K., Wang J., Xu R., Zhan S., Lin G., Wang W., Liu M., Wang L., et al. Development of an antisense RNA delivery system using conjugates of the MS2 bacteriophage capsids and HIV-1 TAT cell-penetrating peptide. Biomed. Pharmacother. 2009;63:313–318. doi: 10.1016/j.biopha.2008.07.086. PubMed DOI

Anand P., O’Neil A., Lin E., Douglas T., Holford M. Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers. Sci. Rep. 2015;5:12497. doi: 10.1038/srep12497. PubMed DOI PMC

Pang H.H., Chen P.Y., Wei K.C., Huang C.-W., Shiue Y.L., Huang C.Y., Yang H.W. Convection-Enhanced Delivery of a Virus-Like Nanotherapeutic Agent with Dual-Modal Imaging for Besiegement and Eradication of Brain Tumors. Theranostics. 2019;9:1752–1763. doi: 10.7150/thno.30977. PubMed DOI PMC

Kim D., Lee Y., Dreher T.W., Cho T.J. Empty Turnip yellow mosaic virus capsids as delivery vehicles to mammalian cells. Virus Res. 2018;252:13–21. doi: 10.1016/j.virusres.2018.05.004. PubMed DOI

Salerno J.C., Ngwa V.M., Nowak S.J., Chrestensen C.A., Healey A.N., McMurry J.L. Novel cell-penetrating peptide-adaptors effect intracellular delivery and endosomal escape of protein cargos. J. Cell Sci. 2016;129:893–897. doi: 10.1242/jcs.182113. PubMed DOI PMC

Koudelka K.J., Destito G., Plummer E.M., Trauger S.A., Siuzdak G., Manchester M. Endothelial Targeting of Cowpea Mosaic Virus (CPMV) via Surface Vimentin. PLoS Pathog. 2009;5:e1000417. doi: 10.1371/journal.ppat.1000417. PubMed DOI PMC

Mansouri M., Berger P. Baculovirus for gene delivery to mammalian cells: Past, present and future. Plasmid. 2018;98:1–7. doi: 10.1016/j.plasmid.2018.05.002. PubMed DOI

Reeh M., Bockhorn M., Görgens D., Vieth M., Hoffmann T., Simon R., Izbicki J.R., Sauter G., Schumacher U., Anders M. Presence of the Coxsackievirus and Adenovirus Receptor (CAR) in human neoplasms: A multitumour array analysis. Br. J. Cancer. 2013;109:1848–1858. doi: 10.1038/bjc.2013.509. PubMed DOI PMC

Wirth T., Zender L., Schulte B., Mundt B., Plentz R., Rudolph K.L., Manns M., Kubicka S., Kühnel F. A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res. 2003;63:3181–3188. PubMed

Rebetz J., Na M., Su C., Holmqvist B., Edqvist A., Nyberg C., Widegren B., Salford L.G., Sjögren H.O., Arnberg N., et al. Fiber Mediated Receptor Masking in Non-Infected Bystander Cells Restricts Adenovirus Cell Killing Effect but Promotes Adenovirus Host Co-Existence. PLoS ONE. 2009;4:e8484. doi: 10.1371/journal.pone.0008484. PubMed DOI PMC

Waddington S.N., McVey J.H., Bhella D., Parker A.L., Barker K., Atoda H., Pink R., Buckley S.M., Greig J.A., Denby L., et al. Adenovirus Serotype 5 Hexon Mediates Liver Gene Transfer. Cell. 2008;132:397–409. doi: 10.1016/j.cell.2008.01.016. PubMed DOI

Vermeer L.S., Hamon L., Schirer A., Schoup M., Cosette J., Majdoul S., Pastré D., Stockholm D., Holic N., Hellwig P., et al. Vectofusin-1, a potent peptidic enhancer of viral gene transfer forms pH-dependent α-helical nanofibrils, concentrating viral particles. Acta Biomater. 2017;64:259–268. doi: 10.1016/j.actbio.2017.10.009. PubMed DOI

Kim P.H., Kim T.I., Yockman J.W., Kim S.W., Yun C.O. The effect of surface modification of adenovirus with an arginine-grafted bioreducible polymer on transduction efficiency and immunogenicity in cancer gene therapy. Biomaterials. 2010;31:1865–1874. doi: 10.1016/j.biomaterials.2009.11.043. PubMed DOI

Rubsamen R., Herst C., Lloyd P., Heckerman D. Eliciting cytotoxic T-lymphocyte responses from synthetic vectors containing one or two epitopes in a C57BL/6 mouse model using peptide-containing biodegradable microspheres and adjuvants. Vaccine. 2014;32:4111–4116. doi: 10.1016/j.vaccine.2014.05.071. PubMed DOI

Grau M., Walker P.R., Derouazi M. Mechanistic insights into the efficacy of cell penetrating peptide-based cancer vaccines. Cell. Mol. Life Sci. 2018;75:2887–2896. doi: 10.1007/s00018-018-2785-0. PubMed DOI PMC

Schumacher T., Ruehland C., Schultheiss C., Brinkman M., Roedel F., Reiser C.O.A., Hess J., Reichel C. Advanced Antigen Delivery of Murine Survivin: Chimeric Virus-Like Particles in Cancer Vaccine Research. Int. J. Biomed. Sci. IJBS. 2007;3:199–205. PubMed PMC

Zhang T.T., Kang T.H., Ma B., Xu Y., Hung C.F., Wu T.C. LAH4 enhances CD8+ T cell immunity of protein/peptide-based vaccines. Vaccine. 2012;30:784–793. doi: 10.1016/j.vaccine.2011.11.056. PubMed DOI PMC

Wang H.Y., Wang R.F. Enhancing cancer immunotherapy by intracellular delivery of cell-penetrating peptides and stimulation of pattern-recognition receptor signaling. Adv. Immunol. 2012;114:151–176. PubMed PMC

Brooks N.A., Pouniotis D.S., Tang C.K., Apostolopoulos V., Pietersz G.A. Cell-penetrating peptides: Application in vaccine delivery. Biochim. Biophys. Acta. 2010;1805:25–34. doi: 10.1016/j.bbcan.2009.09.004. PubMed DOI

Sahdev P., Ochyl L.J., Moon J.J. Biomaterials for nanoparticle vaccine delivery systems. Pharm. Res. 2014;31:2563–2582. doi: 10.1007/s11095-014-1419-y. PubMed DOI PMC

Nakamura T., Moriguchi R., Kogure K., Shastri N., Harashima H. Efficient MHC class I presentation by controlled intracellular trafficking of antigens in octaarginine-modified liposomes. Mol. Ther. 2008;16:1507–1514. doi: 10.1038/mt.2008.122. PubMed DOI

Akhras S., Toda M., Boller K., Himmelsbach K., Elgner F., Biehl M., Scheurer S., Gratz M., Vieths S., Hildt E. Cell-permeable capsids as universal antigen carrier for the induction of an antigen-specific CD8+ T-cell response. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-08787-0. PubMed DOI PMC

Qin H., Ding Y., Mujeeb A., Zhao Y., Nie G. Tumor Microenvironment Targeting and Responsive Peptide-Based Nanoformulations for Improved Tumor Therapy. Mol. Pharmacol. 2017;92:219–231. doi: 10.1124/mol.116.108084. PubMed DOI

Cerrato C.P., Künnapuu K., Langel Ü. Cell-penetrating peptides with intracellular organelle targeting. Expert Opin. Drug Deliv. 2017;14:245–255. doi: 10.1080/17425247.2016.1213237. PubMed DOI

Collado Camps E., Brock R. An opportunistic route to success: Towards a change of paradigm to fully exploit the potential of cell-penetrating peptides. Bioorg. Med. Chem. 2018;26:2780–2787. doi: 10.1016/j.bmc.2017.11.004. PubMed DOI

Habault J., Poyet J.L. Recent Advances in Cell Penetrating Peptide-Based Anticancer Therapies. Molecules. 2019;24:927. doi: 10.3390/molecules24050927. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...