Cell-Laden Hydrogel as a Clinical-Relevant 3D Model for Analyzing Neuroblastoma Growth, Immunophenotype, and Susceptibility to Therapies
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31447858
PubMed Central
PMC6697063
DOI
10.3389/fimmu.2019.01876
Knihovny.cz E-zdroje
- Klíčová slova
- 3D cancer model, B7-H3 and IFN-γ, KIRS/HLA-I, NK cells, PD-Ls, PVR, immunotherapy, neuroblastoma,
- MeSH
- algináty MeSH
- biologické modely MeSH
- buňky NK imunologie MeSH
- hydrogely * MeSH
- imatinib mesylát farmakologie MeSH
- imunofenotypizace MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- neuroblastom * farmakoterapie imunologie patologie MeSH
- proliferace buněk MeSH
- protinádorové látky farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- algináty MeSH
- hydrogely * MeSH
- imatinib mesylát MeSH
- protinádorové látky MeSH
High risk Neuroblastoma (NB) includes aggressive, metastatic solid tumors of childhood. The survival rate improved only modestly, despite the use of combination therapies including novel immunotherapies based on the antibody-mediated targeting of tumor-associated surface ligands. Treatment failures may be due to the lack of adequate in vitro models for studying, in a given patient, the efficacy of potential therapeutics, including those aimed to enhance anti-tumor immune responses. We here propose a 3D alginate-based hydrogel as extracellular microenvironment to evaluate the effects of the three-dimensionality on biological and immunological properties of NB cells. NB cell lines grown within the 3D alginate spheres presented spheroid morphology, optimal survival, and proliferation capabilities, and a reduced sensitivity to the cytotoxic effect of imatinib mesylate. 3D cultured NB cells were also evaluated for the constitutive and IFN-γ-induced expression of surface molecules capable of tuning the anti-tumor activity of NK cells including immune checkpoint ligands. In particular, IFN-γ induced de novo expression of high amounts of HLA-I molecules, which protected NB cells from the attack mediated by KIR/KIR-L matched NK cells. Moreover, in the 3D alginate spheres, the cytokine increased the expression of the immune checkpoint ligands PD-Ls and B7-H3 while virtually abrogating that of PVR, a ligand of DNAM-1 activating receptor, whose expression correlates with high susceptibility to NK-mediated killing. Our 3D model highlighted molecular features that more closely resemble the immunophenotypic variants occurring in vivo and not fully appreciated in classical 2D culture conditions. Thus, based on our results, 3D alginate-based hydrogels might represent a clinical-relevant cell culture platform where to test the efficacy of personalized therapeutic approaches aimed to optimize the current and innovative immune based therapies in a very systematic and reliable way.
Centre of Excellence for Biomedical Research CEBR University of Genoa Genoa Italy
CNR IEIIT Institute National Research Council of Italy Genoa Italy
Department of Experimental Medicine University of Genoa Genoa Italy
FNUSA ICRC Interventional Cardiac Electrophysiology Brno Czechia
Laboratorio di Immunologia IRCCS Ospedale Policlinico San Martino Genoa Italy
Laboratory of Clinical and Experimental Immunology IRCCS Giannina Gaslini Genoa Italy
Zobrazit více v PubMed
SocietyAC Cancer Facts & Figures 2015. Atlanta, GA: American Cancer Society; (2015).
Cheung NKV, Dyer MA. Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer. (2013) 13:397. 10.1038/nrc3526 PubMed DOI PMC
Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl GK, et al. . Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol. (2013) 13:145. 10.1038/nri3365 PubMed DOI
Guia S, Fenis A, Vivier E, Narni-Mancinelli E. Activating and Inhibitory Receptors Expressed on Innate Lymphoid Cells, Seminars in Immunopathology. Springer; (2018). p. 1–11. 10.1007/s00281-018-0685-x PubMed DOI
Vitale M, Della Chiesa M, Carlomagno S, Pende D, Arico M, Moretta L, et al. . NK-dependent DC maturation is mediated by TNFalpha and IFNgamma released upon engagement of the NKp30 triggering receptor. Blood. (2005) 106:566–71. 10.1182/blood-2004-10-4035 PubMed DOI
Bellora F, Castriconi R, Dondero A, Reggiardo G, Moretta L, Mantovani A, et al. . The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes. Proc Natl Acad Sci USA. (2010) 107:21659–64. 10.1073/pnas.1007654108 PubMed DOI PMC
Elliott JM, Yokoyama WM. Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol. (2011) 32:364–72. 10.1016/j.it.2011.06.001 PubMed DOI PMC
Pessino A, Sivori S, Bottino C, Malaspina A, Morelli L, Moretta L, et al. . Molecular cloning of NKp46: a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity. J Exp Med. (1998) 188:953–60. 10.1084/jem.188.5.953 PubMed DOI PMC
Pende D, Parolini S, Pessino A, Sivori S, Augugliaro R, Morelli L, et al. . Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells. J Exp Med. (1999) 190:1505–16. PubMed PMC
Vitale M, Bottino C, Sivori S, Sanseverino L, Castriconi R, Marcenaro E, et al. . NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis. J Exp Med. (1998) 187:2065–72. 10.1084/jem.187.12.2065 PubMed DOI PMC
Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, et al. . An activating immunoreceptor complex formed by NKG2D and DAP10. Science. (1999) 285:730–2. 10.1126/science.285.5428.730 PubMed DOI
Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, et al. . DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity. (1996) 4:573–81. 10.1016/S1074-7613(00)70060-4 PubMed DOI
Bellora F, Castriconi R, Dondero A, Carrega P, Mantovani A, Ferlazzo G, et al. . Human NK cells and NK receptors. Immunol Lett. (2014) 161:168–173. 10.1016/j.imlet.2013.12.009 PubMed DOI
Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, et al. . Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med. (2003) 198:557–67. 10.1084/jem.20030788 PubMed DOI PMC
Castriconi R, Dondero A, Cantoni C, Della Chiesa M, Prato C, Nanni M, et al. . Functional characterization of natural killer cells in type I leukocyte adhesion deficiency. Blood. (2007) 109:4873–81. 10.1182/blood-2006-08-038760 PubMed DOI
Pende D, Spaggiari GM, Marcenaro S, Martini S, Rivera P, Capobianco A, et al. . Analysis of the receptor-ligand interactions in the natural killer–mediated lysis of freshly isolated myeloid or lymphoblastic leukemias: evidence for the involvement of the Poliovirus receptor (CD155) and Nectin-2 (CD112). Blood. (2005) 105:2066–73. 10.1182/blood-2004-09-3548 PubMed DOI
Carlsten M, Björkström NK, Norell H, Bryceson Y, van Hall T, Baumann BC, et al. . DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res. (2007) 67:1317–25. 10.1158/0008-5472.CAN-06-2264 PubMed DOI
Castriconi R, Daga A, Dondero A, Zona G, Poliani PL, Melotti A, et al. . NK cells recognize and kill human glioblastoma cells with stem cell-like properties. J Immunol. (2009) 182:3530–9. 10.4049/jimmunol.0802845 PubMed DOI
Castriconi R, Dondero A, Corrias MV, Lanino E, Pende D, Moretta L, et al. . Natural killer cell-mediated killing of freshly isolated neuroblastoma cells: critical role of DNAX accessory molecule-1–poliovirus receptor interaction. Cancer Res. (2004) 64:9180–4. 10.1158/0008-5472.CAN-04-2682 PubMed DOI
Hou S, Ge K, Zheng X, Wei H, Sun R, Tian Z. CD226 involves in immune synapse formation and triggers NK cell activation via its first extracellular domain. J Biol Chem. (2014) 289:6969–77. 10.1074/jbc.M113.498253 PubMed DOI PMC
Enqvist M, Ask EH, Forslund E, Carlsten M, Abrahamsen G, Béziat V, et al. . Coordinated expression of DNAM-1 and LFA-1 in educated NK cells. J Immunol. (2015) 194:4518–27. 10.4049/jimmunol.1401972 PubMed DOI
Pesce S, Greppi M, Tabellini G, Rampinelli F, Parolini S, Olive D, et al. . Identification of a subset of human natural killer cells expressing high levels of programmed death 1: a phenotypic and functional characterization. J Allergy Clin Immunol. (2017) 139:335–46. e3. 10.1016/j.jaci.2016.04.025 PubMed DOI
Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. (2016) 16:275. 10.1038/nrc.2016.36 PubMed DOI PMC
Ghiotto M, Gauthier L, Serriari N, Pastor S, Truneh A, Nunès JA, et al. . PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1. Int Immunol. (2010) 22:651–60. 10.1093/intimm/dxq049 PubMed DOI PMC
Castriconi R, Dondero A, Augugliaro R, Cantoni C, Carnemolla B, Sementa AR, et al. . Identification of 4Ig-B7-H3 as a neuroblastoma-associated molecule that exerts a protective role from an NK cell-mediated lysis. Proc Natl Acad Sci USA. (2004) 101:12640–5. 10.1073/pnas.0405025101 PubMed DOI PMC
Lemke D, Pfenning PN, Sahm F, Klein AC, Kempf T, Warnken U, et al. . Costimulatory protein 4IgB7H3 drives the malignant phenotype of glioblastoma by mediating immune escape and invasiveness. Clin Cancer Res. (2012) 18:105–17. 10.1158/1078-0432.CCR-11-0880 PubMed DOI
Bottino C, Dondero A, Bellora F, Moretta L, Locatelli F, Pistoia V, et al. . Natural killer cells and neuroblastoma: tumor recognition, escape mechanisms, and possible novel immunotherapeutic approaches. Front Immunol. (2014) 5:56. 10.3389/fimmu.2014.00056 PubMed DOI PMC
Ni L, Dong C. New checkpoints in cancer immunotherapy. Immunol Rev. (2017) 276:52–65. 10.1111/imr.12524 PubMed DOI
Taube JM, Klein AP, Brahmer JR, Xu H, Pan X, Kim JH, et al. . Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. (2014 20:5064–74. 10.1158/1078-0432.CCR-13-3271 PubMed DOI PMC
Bellucci R, Martin A, Bommarito D, Wang K, Hansen SH, Freeman GJ, et al. . Interferon-γ-induced activation of JAK1 and JAK2 suppresses tumor cell susceptibility to NK cells through upregulation of PD-L1 expression. Oncoimmunology. (2015) 4:e1008824. 10.1080/2162402X.2015.1008824 PubMed DOI PMC
Dondero A, Pastorino F, Della Chiesa M, Corrias MV, Morandi F, Pistoia V, et al. Castellano A, PD-L1 expression in metastatic neuroblastoma as an additional mechanism for limiting immune surveillance. Oncoimmunology. (2016) 5:e1064578 10.1080/2162402X.2015.1064578 PubMed DOI PMC
Loo D, Alderson R, Chen FC, Huang L, Zhang W, Gorlatov S, et al. Development of an Fc-enhanced anti-B7-H3 monoclonal antibody with potent anti-tumor activity. Clin Cancer Res. (2012) 18:3834–45. 10.1158/1538-7445.AM2012-2725 PubMed DOI
Du H, Hirabayashi K, Ahn S, Kren NP, Montgomery SA, Wang X, et al. . Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells. Cancer Cell. (2019) 35:221–37.e8. 10.1016/j.ccell.2019.01.002 PubMed DOI PMC
Majzner RG, Theruvath JL, Nellan A, Heitzeneder S, Cui Y, Mount CW, et al. . CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res. (2019) 25:2560–74. 10.1158/1078-0432.CCR-18-0432 PubMed DOI PMC
Seaman S, Stevens J, Yang MY, Logsdon D, Graff-Cherry C, Croix BS. Genes that distinguish physiological and pathological angiogenesis. Cancer Cell. (2007) 11:539–54. 10.1016/j.ccr.2007.04.017 PubMed DOI PMC
Kramer K, Kushner BH, Modak S, Pandit-Taskar N, Smith-Jones P, Zanzonico P, et al. . Compartmental intrathecal radioimmunotherapy: results for treatment for metastatic CNS neuroblastoma. J Neuro Oncol. (2010) 97:409–18. 10.1007/s11060-009-0038-7 PubMed DOI PMC
Guvendiren M, Burdick JA. Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr Opin Biotechnol. (2013) 24:841–6. 10.1016/j.copbio.2013.03.009 PubMed DOI PMC
Xu X, Farach-Carson MC, Jia X. Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol Adv. (2014) 32:1256–68. 10.1016/j.biotechadv.2014.07.009 PubMed DOI PMC
Khavari A, Nydén M, Weitz DA, Ehrlicher AJ. Composite alginate gels for tunable cellular microenvironment mechanics. Sci Rep. (2016) 6:30854 10.1038/srep30854 PubMed DOI PMC
Shakibaei M, Kraehe P, Popper B, Shayan P, Goel A, Buhrmann C. Curcumin potentiates antitumor activity of 5-fluorouracil in a 3D alginate tumor microenvironment of colorectal cancer. BMC Cancer. (2015) 15:250. 10.1186/s12885-015-1291-0 PubMed DOI PMC
Marrella A, Lagazzo A, Dellacasa E, Pasquini C, Finocchio E, Barberis F, et al. . 3D porous gelatin/PVA hydrogel as meniscus substitute using alginate micro-particles as porogens. Polymers. (2018) 10:380. 10.3390/polym10040380 PubMed DOI PMC
Cavo M, Fato M, Peñuela L, Beltrame F, Raiteri R, Scaglione S. Microenvironment complexity and matrix stiffness regulate breast cancer cell activity in a 3D in vitro model. Sci Rep. (2016) 6:35367. 10.1038/srep35367 PubMed DOI PMC
Marrella A, Lagazzo A, Barberis F, Catelani T, Quarto R, Scaglione S. Enhanced mechanical performances and bioactivity of cell laden-graphene oxide/alginate hydrogels open new scenario for articular tissue engineering applications. Carbon. (2017) 115:608–16. 10.1016/j.carbon.2017.01.037 DOI
Corrias MV, Scaruffi P, Occhino M, De Bernardi B, Tonini GP, Pistoia V. Expression of MAGE-1, MAGE-3 and MART-1 genes in neuroblastoma. Int J Cancer. (1996) 69:403–7. PubMed
Pradhan S, Clary JM, Seliktar D, Lipke EA. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres. Biomaterials. (2017) 115:141–54. 10.1016/j.biomaterials.2016.10.052 PubMed DOI
Morandi F, Amoroso L, Dondero A, Castriconi R, Parodi S, Luksch R, et al. . Updated clinical and biological information from the two-stage phase II study of imatinib mesylate in subjects with relapsed/refractory neuroblastoma. Oncoimmunology. (2018) 7:e1468953. 10.1080/2162402X.2018.1468953 PubMed DOI PMC
Bellora F, Dondero A, Corrias MV, Casu B, Regis S, Caliendo F, et al. . Imatinib and nilotinib off-target effects on human NK cells, monocytes, and M2 macrophages. J Immunol. (2017) 199:1516–25. 10.4049/jimmunol.1601695 PubMed DOI
Klein S, Abraham M, Bulvik B, Dery E, Weiss ID, Barashi N, et al. . CXCR4 promotes neuroblastoma growth and therapeutic resistance through miR-15a/16-1-mediated ERK and BCL2/Cyclin D1 pathways. Cancer Res. (2018) 78:1471–83. 10.1158/0008-5472.CAN-17-0454 PubMed DOI
Smith BH, Gazda LS, Conn BL, Jain K, Asina S, Levine DM, et al. Three-dimensional culture of mouse renal carcinoma cells in agarose macrobeads selects for a subpopulation of cells with cancer stem cell or cancer progenitor properties. Cancer Res. (2011) 71:716–24. 10.1158/0008-5472.CAN-10-2254 PubMed DOI
Curtin C, Nolan J, Conlon R, Deneweth L, Gallagher C, Tan Y, et al. . A physiologically relevant 3D collagen-based scaffold–neuroblastoma cell system exhibits chemosensitivity similar to orthotopic xenograft models. Acta Biomater. (2018) 70:84–97. 10.1016/j.actbio.2018.02.004 PubMed DOI
Baek N, Seo OW, Kim M, Hulme J, An SA. Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time. OncoTargets Ther. (2016) 9:7207. 10.2147/OTT.S112566 PubMed DOI PMC
Yeung P, Sin HS, Chan S, Chan GC, Chan BP. Microencapsulation of neuroblastoma cells and mesenchymal stromal cells in collagen microspheres: a 3D model for cancer cell niche study. PLoS ONE. (2015) 10:e0144139. 10.1371/journal.pone.0144139 PubMed DOI PMC
Li GN, Livi LL, Gourd CM, Deweerd ES, Hoffman-Kim D. Genomic and morphological changes of neuroblastoma cells in response to three-dimensional matrices. Tissue Eng. (2007) 13:1035–47. 10.1089/ten.2006.0251 PubMed DOI
Desai A, Kisaalita WS, Keith C, Wu ZZ. Human neuroblastoma (SH-SY5Y) cell culture and differentiation in 3-D collagen hydrogels for cell-based biosensing. Biosens Bioelectron. (2006) 21:1483–92. 10.1016/j.bios.2005.07.005 PubMed DOI
Kuo YT, Liu YL, Adebayo BO, Shih PH, Lee WH, Wang LS, et al. . JARID1B expression plays a critical role in chemoresistance and stem cell-like phenotype of neuroblastoma cells. PLoS ONE. (2015) 10:e0125343. 10.1371/journal.pone.0125343 PubMed DOI PMC
Wallace DI, Dunham A, Chen PX, Chen M, Huynh M, Rheingold E, et al. . A model for spheroid versus monolayer response of SK-N-SH neuroblastoma cells to treatment with 15-Deoxy-PGJ2. Comput Math Methods Med. (2016) 2016:3628124. 10.1155/2016/3628124 PubMed DOI PMC
Cuperus R, Tytgat GA, Leen R, Brites P, Bras J, Caron HN, et al. . Pleiotropic effects of fenretinide in neuroblastoma cell lines and multicellular tumor spheroids. Int J Oncol. (2008) 32:1011–9. 10.3892/ijo.32.5.1011 PubMed DOI
Besancon OG, Tytgat GA, Meinsma R, Leen R, Hoebink J, Kalayda GV, et al. . Synergistic interaction between cisplatin and gemcitabine in neuroblastoma cell lines and multicellular tumor spheroids. Cancer Lett. (2012) 319:23–30. 10.1016/j.canlet.2011.12.016 PubMed DOI
Tanno B, Mancini C, Vitali R, Mancuso M, McDowell HP, Dominici C, et al. . Down-regulation of insulin-like growth factor I receptor activity by NVP-AEW541 has an antitumor effect on neuroblastoma cells in vitro and in vivo. Clin Cancer Res. (2006) 12:6772–80. 10.1158/1078-0432.CCR-06-1479 PubMed DOI
Yang X, Sarvestani SK, Moeinzadeh S, He X, Jabbari E. Three-dimensional-engineered matrix to study cancer stem cells and tumorsphere formation: effect of matrix modulus. Tissue Engineering Part A. (2012) 19:669–84. 10.1089/ten.tea.2012.0333 PubMed DOI PMC
Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC. Bioengineered 3D platform to explore cell–ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials. (2010) 31:8494–506. 10.1016/j.biomaterials.2010.07.064 PubMed DOI
Marrella A, Giannoni P, Pulsoni I, Quarto R, Raiteri R, Scaglione S. Topographical features of graphene-oxide-functionalized substrates modulate cancer and healthy cell adhesion based on the cell tissue of origin. ACS Appl Mater Interf. (2018) 10:41978–85. 10.1021/acsami.8b15036 PubMed DOI
Kaufman L, Brangwynne C, Kasza K, Filippidi E, Gordon VD, Deisboeck T, et al. . Glioma expansion in collagen I matrices: analyzing collagen concentration-dependent growth and motility patterns. Biophys J. (2005) 89:635–50. 10.1529/biophysj.105.061994 PubMed DOI PMC
Taylor Z, Miller K. Reassessment of brain elasticity for analysis of biomechanisms of hydrocephalus. J Biomechan. (2004) 37:1263–9. 10.1016/j.jbiomech.2003.11.027 PubMed DOI
Balgude A, Yu X, Szymanski A, Bellamkonda R. Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials. (2001) 22:1077–84. 10.1016/S0142-9612(00)00350-1 PubMed DOI
Engler AJ, Griffin MA, Sen S, Bönnemann CG, Sweeney HL, Discher DE. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol. (2004) 166:877–87. 10.1083/jcb.200405004 PubMed DOI PMC
Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. (2006) 126:677–89. 10.1016/j.cell.2006.06.044 PubMed DOI
Georges PC, Miller WJ, Meaney DF, Sawyer ES, Janmey PA. Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophysical J. (2006) 90:3012–8. 10.1529/biophysj.105.073114 PubMed DOI PMC
Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, et al. . Substrate modulus directs neural stem cell behavior. Biophys J. (2008) 95:4426–38. 10.1529/biophysj.108.132217 PubMed DOI PMC
Dondero A, Casu B, Bellora F, Vacca A, De Luisi A, Frassanito MA, et al. . NK cells and multiple myeloma-associated endothelial cells: molecular interactions and influence of IL-27. Oncotarget. (2017) 8:35088. 10.18632/oncotarget.17070 PubMed DOI PMC
Gregorio A, Corrias M, Castriconi R, Dondero A, Mosconi M, Gambini C, et al. . Small round blue cell tumours: diagnostic and prognostic usefulness of the expression of B7-H3 surface molecule. Histopathology. (2008) 53:73–80. 10.1111/j.1365-2559.2008.03070.x PubMed DOI PMC
Mueller I, Ehlert K, Endres S, Pill L, Siebert N, Kietz S, et al. . Tolerability, response and outcome of high-risk neuroblastoma patients treated with long-term infusion of anti-GD2 antibody ch14.18/CHO. mAbs. (2018) 10:55–61. 10.1080/19420862.2017.1402997 PubMed DOI PMC
Xu XJ, Tang YM. Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells. Cancer Lett. (2014) 343:172–8. 10.1016/j.canlet.2013.10.004 PubMed DOI
Hu Y, Sun J, Wu Z, Yu J, Cui Q, Pu C, et al. . Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy. J Hematol Oncol. (2016) 9:70. 10.1186/s13045-016-0299-5 PubMed DOI PMC
Norelli M, Camisa B, Barbiera G, Falcone L, Purevdorj A, Genua M, et al. . Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. (2018) 24:739–48. 10.1038/s41591-018-0036-4 PubMed DOI
Iguchi-Manaka A, Kai H, Yamashita Y, Shibata K, Tahara-Hanaoka S, Honda SI, et al. . Accelerated tumor growth in mice deficient in DNAM-1 receptor. J Exp Med. (2008) 205:2959–64. 10.1084/jem.20081611 PubMed DOI PMC
Chan CJ, Andrews DM, McLaughlin NM, Yagita H, Gilfillan S, Colonna M, et al. . DNAM-1/CD155 interactions promote cytokine and NK cell-mediated suppression of poorly immunogenic melanoma metastases. J Immunol. (2010) 184:902–11. 10.4049/jimmunol.0903225 PubMed DOI
Brlić PK, Roviš TL, Cinamon G, Tsukerman P, Mandelboim O, Jonjić S. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol. (2018) 16:40–52. 10.1038/s41423-018-0168-y PubMed DOI PMC
Wu MR, Zhang T, Alcon A, Sentman CL. DNAM-1-based chimeric antigen receptors enhance T cell effector function and exhibit in vivo efficacy against melanoma. Cancer Immunol Immunother. (2015) 64:409–18. 10.1007/s00262-014-1648-2 PubMed DOI PMC
Toyoda H, Yin J, Mueller S, Wimmer E, Cello J. Oncolytic treatment and cure of neuroblastoma by a novel attenuated poliovirus in a novel poliovirus-susceptible animal model. Cancer Res. (2007) 67:2857–64. 10.1158/0008-5472.CAN-06-3713 PubMed DOI