Supercell refinement: a cautionary tale
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
MC_UP_A025_1012
Medical Research Council - United Kingdom
P30 CA036727
NCI NIH HHS - United States
1518145
National Science Foundation, Division of Molecular and Cellular Biosciences
18-10504S
Czech Science Foundation
PubMed
31478908
PubMed Central
PMC6719663
DOI
10.1107/s2059798319011082
PII: S2059798319011082
Knihovny.cz E-resources
- Keywords
- aperiodic crystallography, modulated protein crystals, supercell crystallographic refinement, superspace group,
- MeSH
- Actins chemistry MeSH
- Protein Conformation MeSH
- Crystallography, X-Ray methods MeSH
- Models, Molecular MeSH
- Profilins chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Actins MeSH
- Profilins MeSH
Theoretically, crystals with supercells exist at a unique crossroads where they can be considered as either a large unit cell with closely spaced reflections in reciprocal space or a higher dimensional superspace with a modulation that is commensurate with the supercell. In the latter case, the structure would be defined as an average structure with functions representing a modulation to determine the atomic location in 3D space. Here, a model protein structure and simulated diffraction data were used to investigate the possibility of solving a real incommensurately modulated protein crystal using a supercell approximation. In this way, the answer was known and the refinement method could be tested. Firstly, an average structure was solved by using the `main' reflections, which represent the subset of the reflections that belong to the subcell and in general are more intense than the `satellite' reflections. The average structure was then expanded to create a supercell and refined using all of the reflections. Surprisingly, the refined solution did not match the expected solution, even though the statistics were excellent. Interestingly, the corresponding superspace group had multiple 3D daughter supercell space groups as possibilities, and it was one of the alternate daughter space groups that the refinement locked in on. The lessons learned here will be applied to a real incommensurately modulated profilin-actin crystal that has the same superspace group.
See more in PubMed
Campeotto, I., Lebedev, A., Schreurs, A. M. M., Kroon-Batenburg, L. M. J., Lowe, E., Phillips, S. E. V., Murshudov, G. N. & Pearson, A. R. (2018). Sci. Rep. 8, 14876. PubMed PMC
Dusek, M., Chapuis, G., Meyer, M. & Petricek, V. (2003). Acta Cryst. B59, 337–352. PubMed
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. (2010). Acta Cryst. D66, 486–501. PubMed PMC
Janner, A. & Janssen, T. (1977). Phys. Rev. B, 15, 643–658.
Janner, A. & Janssen, T. (1980). Acta Cryst. A36, 408–415.
Janssen, T., Janner, A., Looijenga-Vos, A. & Wolff, P. M. D. (1999). International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson & E. Prince, pp. 899–947. Dordrecht: Kluwer Academic Publishers.
Lovelace, J. J., Murphy, C. R., Daniels, L., Narayan, K., Schutt, C. E., Lindberg, U., Svensson, C. & Borgstahl, G. E. O. (2008). J. Appl. Cryst. 41, 600–605.
Lovelace, J. J., Simone, P. D., Petříček, V. & Borgstahl, G. E. O. (2013). Acta Cryst. D69, 1062–1072. PubMed PMC
McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C. & Read, R. J. (2007). J. Appl. Cryst. 40, 658–674. PubMed PMC
Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F. & Vagin, A. A. (2011). Acta Cryst. D67, 355–367. PubMed PMC
Orlov, I., Palatinus, L. & Chapuis, G. (2008). J. Appl. Cryst. 41, 1182–1186.
Petricek, V., Dusek, M. & Palatinus, L. (2006). Z. Kristallogr. 229, 345–352.
Porta, J., Lovelace, J. & Borgstahl, G. E. O. (2017). J. Appl. Cryst. 50, 1200–1207. PubMed PMC
Porta, J., Lovelace, J. J., Schreurs, A. M. M., Kroon-Batenburg, L. M. J. & Borgstahl, G. E. O. (2011). Acta Cryst. D67, 628–638. PubMed PMC
Sliwiak, J., Dauter, Z., Kowiel, M., McCoy, A. J., Read, R. J. & Jaskolski, M. (2015). Acta Cryst. D71, 829–843. PubMed PMC
Sliwiak, J., Jaskolski, M., Dauter, Z., McCoy, A. J. & Read, R. J. (2014). Acta Cryst. D70, 471–480. PubMed PMC
Smaalen, S. van (2007). Incommensurate Crystallography. Oxford University Press. PubMed
Wagner, T. & Schönleber, A. (2009). Acta Cryst. B65, 249–268. PubMed
Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A. & Wilson, K. S. (2011). Acta Cryst. D67, 235–242. PubMed PMC