Arginine methylation augments Sbp1 function in translation repression and decapping
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
IA/I/12/2/500625
DBT-Wellcome Trust India Alliance - India
IA/I/12/2/500625
Wellcome DBT India Alliance - International
BT/PR13267/BRB/10/1444/2015
Department of Biotechnology, India - International
PubMed
31495062
PubMed Central
PMC6916386
DOI
10.1111/febs.15057
Knihovny.cz E-zdroje
- Klíčová slova
- RGG-motif proteins, RNA granules, Sbp1, decapping, eIF4G, translation repression,
- MeSH
- aminokyselinové motivy MeSH
- arginin metabolismus MeSH
- cirkulární dichroismus MeSH
- cytoplazmatická granula metabolismus MeSH
- messenger RNA metabolismus MeSH
- metylace MeSH
- posttranslační úpravy proteinů MeSH
- proteiny vázající selen metabolismus MeSH
- Saccharomyces cerevisiae - proteiny metabolismus MeSH
- sekvence aminokyselin MeSH
- vazba proteinů MeSH
- western blotting MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arginin MeSH
- messenger RNA MeSH
- proteiny vázající selen MeSH
- Saccharomyces cerevisiae - proteiny MeSH
The fate of messenger RNA in cytoplasm plays a crucial role in various cellular processes. However, the mechanisms that decide whether mRNA will be translated, degraded or stored remain unclear. Single stranded nucleic acid binding protein (Sbp1), an Arginine-Glycine-Glycine (RGG-motif) protein, is known to promote transition of mRNA into a repressed state by binding eukaryotic translation initiation factor 4G1 (eIF4G1) and to promote mRNA decapping, perhaps by modulation of Dcp1/2 activity. Sbp1 is known to be methylated on arginine residues in RGG-motif; however, the functional relevance of this modification in vivo remains unknown. Here, we report that Sbp1 is arginine-methylated in an hnRNP methyl transferase (Hmt1)-dependent manner and that methylation is enhanced upon glucose deprivation. Characterization of an arginine-methylation-defective (AMD) mutant provided evidence that methylation affects Sbp1 function in vivo. The AMD mutant is compromised in causing growth defect upon overexpression, and the mutant is defective in both localizing to and inducing granule formation. Importantly, the Sbp1-eIF4G1 interaction is compromised both for the AMD mutant and in the absence of Hmt1. Upon overexpression, wild-type Sbp1 increases localization of another RGG motif containing protein, Scd6 (suppressor of clathrin deficiency) to granules; however, this property of Sbp1 is compromised in the AMD mutant and in the absence of Hmt1, indicating that Sbp1 repression activity could involve other RGG-motif translation repressors. Additionally, the AMD mutant fails to increase localization of the decapping activator DEAD box helicase homolog to foci and fails to rescue the decapping defect of a dcp1-2Δski8 strain, highlighting the role of Sbp1 methylation in decapping. Taken together, these results suggest that arginine methylation modulates Sbp1 role in mRNA fate determination.
Department of Biochemistry Indian Institute of Science Bangalore India
Zobrazit více v PubMed
Roy D & Rajyaguru PI (2018) Suppressor of clathrin deficiency (Scd6)‐An emerging RGG‐motif translation repressor. Wiley Interdiscip Rev RNA 2018, e1479. PubMed
Coller J & Parker R (2005) General translational repression by activators of mRNA decapping. Cell 122, 875–886. PubMed PMC
Hilliker A, Gao Z, Jankowsky E & Parker R (2011) The DEAD‐box protein Ded1 modulates translation by the formation and resolution of an eIF4F‐mRNA complex. Mol Cell 43, 962–972. PubMed PMC
Nakamura A, Sato K & Hanyu‐Nakamura K (2004) Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev Cell 6, 69–78. PubMed
Sonenberg N & Gingras AC (1998) The mRNA 5′ cap‐binding protein eIF4E and control of cell growth. Curr Opin Cell Biol 10, 268–275. PubMed
Rajyaguru P, She M & Parker R (2012) Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G‐binding proteins. Mol Cell 45, 244–254. PubMed PMC
Rajyaguru P & Parker R (2012) RGG motif proteins: modulators of mRNA functional states. Cell Cycle 11, 2594–2599. PubMed PMC
Segal SP, Dunckley T & Parker R (2006) Sbp1p affects translational repression and decapping in Saccharomyces cerevisiae . Mol Cell Biol 26, 5120–5130. PubMed PMC
Mitchell SF, Jain S, She M & Parker R (2013) Global analysis of yeast mRNPs. Nat Struct Mol Biol 20, 127–133. PubMed PMC
Beckham C, Hilliker A, Cziko AM, Noueiry A, Ramaswami M & Parker R (2008) The DEAD‐box RNA helicase Ded1p affects and accumulates in Saccharomyces cerevisiae P‐bodies. Mol Biol Cell 19, 984–993. PubMed PMC
Pilkington GR & Parker R (2008) Pat1 contains distinct functional domains that promote P‐body assembly and activation of decapping. Mol Cell Biol 28, 1298–1312. PubMed PMC
Gareau C, Houssin E, Martel D, Coudert L, Mellaoui S, Huot ME, Laprise P & Mazroui R (2013) Characterization of fragile X mental retardation protein recruitment and dynamics in Drosophila stress granules. PLoS One 8, e55342. PubMed PMC
Lasko P (2003) Cup‐ling oskar RNA localization and translational control. J Cell Biol 163, 1189–1191. PubMed PMC
Lischwe MA, Roberts KD, Yeoman LC & Busch H (1982) Nucleolar specific acidic phosphoprotein C23 is highly methylated. J Biol Chem 257, 14600–14602. PubMed
Plank M, Fischer R, Geoghegan V, Charles PD, Konietzny R, Acuto O, Pears C, Schofield CJ & Kessler BM (2015) Expanding the yeast protein arginine methylome. Proteomics 15, 3232–3243. PubMed
Chen C, Nott TJ, Jin J & Pawson T (2011) Deciphering arginine methylation: tudor tells the tale. Nat Rev Mol Cell Biol 12, 629–642. PubMed
Blanc RS & Richard S (2017) Arginine methylation: the coming of age. Mol Cell 65, 8–24. PubMed
Zhang X & Cheng X (2003) Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11, 509–520. PubMed PMC
Weiss VH, McBride AE, Soriano MA, Filman DJ, Silver PA & Hogle JM (2000) The structure and oligomerization of the yeast arginine methyltransferase, Hmt1. Nat Struct Biol 7, 1165–1171. PubMed
Thandapani P, O'Connor TR, Bailey TL & Richard S (2013) Defining the RGG/RG motif. Mol Cell 50, 613–623. PubMed
Hsieh CH, Huang SY, Wu YC, Liu LF, Han CC, Liu YC & Tam MF (2007) Expression of proteins with dimethylarginines in Escherichia coli for protein‐protein interaction studies. Protein Sci 16, 919–928. PubMed PMC
Frankel A & Clarke S (1999) RNase treatment of yeast and mammalian cell extracts affects in vitro substrate methylation by type I protein arginine N‐methyltransferases. Biochem Biophys Res Commun 259, 391–400. PubMed
Brandariz‐Nunez A, Zeng F, Lam QN & Jin H (2017) Sbp1 modulates the translation of Pab1 mRNA in a poly(A)‐ and RGG‐dependent manner. RNA 24, 43–55. PubMed PMC
Nissan T, Rajyaguru P, She M, Song H & Parker R (2010) Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell 39, 773–783. PubMed PMC
Poornima G, Shah S, Vignesh V, Parker R & Rajyaguru PI (2016) Arginine methylation promotes translation repression activity of eIF4G‐binding protein, Scd6. Nucleic Acids Res 44, 9358–9368. PubMed PMC
Buchan JR (2014) mRNP granules. Assembly, function, and connections with disease. RNA Biol 11, 1019–1030. PubMed PMC
Anderson P & Kedersha N (2009) RNA granules: post‐transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10, 430–436. PubMed
Carroll JS, Munchel SE & Weis K (2011) The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics. J Cell Biol 194, 527–537. PubMed PMC
Lien PT, Izumikawa K, Muroi K, Irie K & Suda Y (2016) Analysis of the physiological activities of Scd6 through its interaction with Hmt1. PLoS One 11, e0164773. PubMed PMC
Low JK, Hart‐Smith G, Erce MA & Wilkins MR (2013) Analysis of the proteome of Saccharomyces cerevisiae for methylarginine. J Proteome Res 12, 3884–3899. PubMed
Huang L, Wang Z, Narayanan N & Yang Y (2018) Arginine methylation of the C‐terminus RGG motif promotes TOP3B topoisomerase activity and stress granule localization. Nucleic Acids Res 46, 3061–3074. PubMed PMC
Poornima G, Mythili R, Nag P, Parbin S, Verma PK, Hussain T & Rajyaguru PI (2019) RGG‐motif self‐association regulates eIF4G‐binding translation repressor protein Scd6. RNA Biol 16, 1215–1227. PubMed PMC