Application of Isothermal and Isoperibolic Calorimetry to Assess the Effect of Zinc on Hydration of Cement Blended with Slag
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA19-16646S
Czech science foundation
PubMed
31510096
PubMed Central
PMC6766343
DOI
10.3390/ma12182930
PII: ma12182930
Knihovny.cz E-zdroje
- Klíčová slova
- Portland cement, ground blast furnace slag, isoperibolic calorimetry, isothermal calorimetry, zinc,
- Publikační typ
- časopisecké články MeSH
This work deals with the influence of zinc on cement hydration. The amount of zinc in cement has increased over recent years. This is mainly due to the utilization of solid waste and tires, which are widely used as a fuel in a rotary kiln. Zinc can also be introduced to cement through such secondary raw materials as slag, due to increased recycling of galvanized materials. The aim of this work was to determine the effect of zinc on the hydration of Portland cement, blended with ground blast furnace slag (GBFS). This effect was studied by isothermal and isoperibolic calorimetry. Both calorimetry methods are suitable for measurements during the first days of hydration. Isoperibolic calorimetry monitors the hydration process in real-life conditions, while isothermal calorimetry does so at a defined chosen temperature. Zinc was added to the cement in the form of two soluble salts, namely Zn(NO3)2, ZnCl2, and a poorly soluble compound, ZnO. The concentration of added zinc was chosen to be 0.05, 0.1, 0.5, and 1mass percent. The amount of GBFS replacement was 15% of cement dosage. The newly formed hydration products were identified by X-ray diffraction method (XRD).
Zobrazit více v PubMed
Glasser F.P., Marchand J., Samson E. Durability of concrete—Degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 2008;38:226–246. doi: 10.1016/j.cemconres.2007.09.015. DOI
Lawrence C.D. The production of low-energy cements. In: Hewlett P.C., editor. Lea’s Chemistry of Cement and Concrete. 4th ed. Butterworth-Heinemann; Oxford, UK: 2004. pp. 421–470.
Palou M.T., Šoukal F., Boháč M., Šiler P., Ifka T., Živica V. Performance of G-Oil Well cement exposed to elevated hydrothermal curing conditions. J. Therm. Anal. Calorim. 2014;118:865–874. doi: 10.1007/s10973-014-3917-x. DOI
Dweck J., Melchert M.B.M., Cartledge F.K., Leonardo R.S., Filho R.D.T. A comparative study of hydration kinetics of different cements by thermogravimetry on calcined mass basis. J. Therm. Anal. Calorim. 2016;128:1335–1342. doi: 10.1007/s10973-016-6080-8. DOI
Li C., Lu X., Jing G., Ye Z., Wang S., Cheng X. The effect of gypsum on the hydration of alite–belite–ferrite phase system. J. Therm. Anal. Calorim. 2018;136:717–724. doi: 10.1007/s10973-018-7643-7. DOI
Gawlicki M., Czamarska D. Effect of ZnO on the hydration of Portland cement. J. Therm. Anal. Calorim. 1992;38:2157–2161. doi: 10.1007/BF01979629. DOI
Gineys N., Aouad G., Damidot D. Managing trace elements in Portland cement—Part I: Interactions between cement paste and heavy metals added during mixing as soluble salts. Cem. Concr. Compos. 2010;32:563–570. doi: 10.1016/j.cemconcomp.2010.06.002. DOI
Gineys N., Aouad G., Damidot D. Managing trace elements in Portland cement—Part II: Comparison of two methods to incorporate Zn in cement. Cement and concrete composites. Cem. Concr. Compos. 2011;33:629–636. doi: 10.1016/j.cemconcomp.2011.03.008. DOI
Murat M., Sorrentino F. Effect of large additions of Cd, Pb, Cr, Zn to cement raw metal on the composition and the properties of the clinker and cement. Cem. Concr. Res. 1996;26:377–385. doi: 10.1016/S0008-8846(96)85025-3. DOI
Andrade F.R.D., Maringolo V., Kihara Y. Incorporation of V, Zn and Pb into the crystalline phases of Portland clinker. Cem. Concr. Res. 2003;33:63–71. doi: 10.1016/S0008-8846(02)00928-6. DOI
Olmo I.F., Chacon E., Irabien A. Influence of lead, zinc, iron (III) and chromium (III) oxides the setting time and strength development of Portland cement. Cem. Concr. Res. 2001;31:1213–1219. doi: 10.1016/S0008-8846(01)00545-2. DOI
Barbir D. Effects of Mud from a Zinc-plating Plant and Zeolite Saturated with Zinc on Portland Cement Hydration and Properties of Hardened Cement Pastes. Chem. Biochem. Eng. Q. 2017;30:401–409. doi: 10.15255/CABEQ.2016.846. DOI
Chen Q.Y., Tyrer M., Hills C.D., Yang X.M., Carey P. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review. Waste Manag. 2009;29:390–403. doi: 10.1016/j.wasman.2008.01.019. PubMed DOI
Weeks C., Hand R.J., Sharp J.H. Retardation of cement hydration caused by heavy metals present in ISF slag used as aggregate. Cem. Concr. Compos. 2008;30:970–978. doi: 10.1016/j.cemconcomp.2008.07.005. DOI
Trussell S., Spence R.D. A review of solidification/stabilization interferences. Waste Manag. 1994;6:507–519. doi: 10.1016/0956-053X(94)90134-1. DOI
Asavapisit S., Fowler G., Cheeseman C.R. Solution chemistry during cement hydration in the presence of metal hydroxide wastes. Cem. Concr. Res. 1997;27:1249–1260. doi: 10.1016/S0008-8846(97)00109-9. DOI
Hamilton I.W., Sammes N.M. Encapsulation of steel foundry bag house dusts in cement mortar. Cem. Concr. Res. 1999;29:55–61. doi: 10.1016/S0008-8846(98)00169-0. DOI
Qian G.R., Shiy J., Cao Y.L., Xu Y.F., Chui P.C. Properties of MSW fly ash–calcium sulfoaluminate cement matrix and stabilization/solidification on heavy metals. J. Hazard. Mater. 2007;152:196–203. doi: 10.1016/j.jhazmat.2007.06.118. PubMed DOI
Ataie F.F., Juenger M.C.G., Taylor-Lange S.C., Riding K.A. Comparison of the retarding mechanisms of zinc oxide and sucrose on cement hydration and interactions with supplementary cementitious materials. Cem. Concr. Res. 2015;72:128–136. doi: 10.1016/j.cemconres.2015.02.023. DOI
Ziegler F., Scheidegger A.M., Johnson C.A., Dähn R., Wieland E. Sorption Mechanisms of Zinc to Calcium Silicate Hydrate: X-ray absorption fine structure (XAFS) investigation. Environ. Sci. Technol. 2001;35:1550–1555. doi: 10.1021/es001437+. PubMed DOI
Rose J., Moulin I., Masion A., Bertsch P.M., Wiesner M.R., Bottero J.-Y., Mosnier F., Haehnel C. X-ray Absorption Spectroscopy Study of Immobilization Processes for Heavy Metals in Calcium Silicate Hydrates. 2. Zinc. Langmuir. 2001;17:3658–3665. doi: 10.1021/la001302h. DOI
Ziegler F., Gieré R., Johnson C.A. Sorption Mechanisms of Zinc to Calcium Silicate Hydrate: Sorption and Microscopic Investigations. Environ. Sci. Technol. 2001;35:4556–4561. doi: 10.1021/es001768m. PubMed DOI
Stumm A., Garbev K., Beuchle G., Black L., Stemmermann P., Nüesch R. Incorporation of zinc into calcium silicate hydrates, Part I: Formation of C-S-H(I) with C/S=2/3 and its isochemical counterpart gyrolite. Cem. Concr. Res. 2005;35:1665–1675. doi: 10.1016/j.cemconres.2004.11.007. DOI
Johnson C.A., Kersten M. Solubility of Zn(II) in Association with Calcium Silicate Hydrates in Alkaline Solutions. Environ. Sci. Technol. 1999;33:2296–2298. doi: 10.1021/es9808651. DOI
Ziegler F., Johnson C.A. The solubility of calcium zincate (CaZn2(OH)6.2H2O) Cem. Concr. Res. 2001;31:1327–1332. doi: 10.1016/S0008-8846(01)00557-9. DOI
McWhitnney H.G., Cocke D.L. A surface study of the chemistry of zinc, cadmium and mercury in Portland cement. Waste Manag. 1993;13:117–123. doi: 10.1016/0956-053X(93)90003-F. DOI
Nochaiya T., Sekine Y., Choooun S., Chaipanich A. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive. J. Alloys Compd. 2015;630:1–10. doi: 10.1016/j.jallcom.2014.11.043. DOI
Li X.G., Yin X.B., Ma B.G., Wu B., Chen Q., Lv Y. Investigation on Hydration Characteristics of Zinc-Doped Portland Cement Pastes. Adv. Mater. Res. 2010;168–170:623–627. doi: 10.4028/www.scientific.net/AMR.168-170.623. DOI
Šiler P., Kolářová I., Novotný R., Másilko J., Pořízka J., Bednárek J., Švec J., Opravil T. Application of isothermal and isoperibolic calorimetry to assess the effect of zinc on cement hydration. J. Therm. Anal. Calorim. 2017;133:27–40. doi: 10.1007/s10973-017-6815-1. PubMed DOI
Coppola L., Coffetti D., Crotti E., Gazzaniga G., Pastore T. An Empathetic Added Sustainability Index (EASI) for Cementitious Based Construction Materials. J. Clean. Prod. 2019;220:475–482. doi: 10.1016/j.jclepro.2019.02.160. DOI
Bougara A., Lynsdale C., Milestone N.B. The influence of slag properties, mix parameters and curing temperature on hydration and strength development of slag/cement blends. Constr. Build. Mater. 2018;187:339–347. doi: 10.1016/j.conbuildmat.2018.07.166. DOI
Kledyński Z., Machowska A., Pacewska B., Wilińska I. Investigation of hydration products of fly ash–slag pastes. J. Therm. Anal. Calorim. 2017;130:351–363. doi: 10.1007/s10973-017-6233-4. DOI
Ogirigbo O.R., Black L. Influence of slag composition and temperature on the hydration and microstructure of slag blended cements. Constr. Build. Mater. 2016;126:496–507. doi: 10.1016/j.conbuildmat.2016.09.057. DOI
Kalinkin A.M., Gurevich B.I., Myshenkov M.S., Kalinkina E.V., Zvereva I.A. A calorimetric study of hydration of magnesia-ferriferous slag mechanically activated in air and in CO2 atmosphere. J. Therm. Anal. Calorim. 2018;134:165–171. doi: 10.1007/s10973-018-7439-9. DOI
Castellano C., Bonavetti V., Donza H., Irassar E. The effect of w/b and temperature on the hydration and strength of blast furnace slag cements. Constr. Build. Mater. 2016;111:679–688. doi: 10.1016/j.conbuildmat.2015.11.001. DOI
Šiler P., Bayer P., Sehnal T., Kolářová I., Opravil T., Šoukal F. Effects of high-temperature fly ash and fluidized bed combustion ash on the hydration of Portland cement. Constr. Build. Mater. 2015;78:181–188. doi: 10.1016/j.conbuildmat.2015.01.032. DOI
Siler P., Kratky J., Kolarova I., Havlica J., Brandstetr J. Calorimetric determination of the effect of additives on cement hydration process. Chem. Pap. 2013;67:213–220. doi: 10.2478/s11696-012-0256-x. DOI
Siler P., Kratky J., De Belie N. Isothermal and solution calorimetry to assess the effect of superplasticizers and mineral admixtures on cement hydration. J. Therm. Anal. Calorim. 2012;107:313–320. doi: 10.1007/s10973-011-1479-8. DOI
Pacewska B., Wilińska I., Nowacka M. Studies on the influence of different fly ashes and Portland cement on early hydration of calcium aluminate cement. J. Therm. Anal. Calorim. 2011;106:859–868. doi: 10.1007/s10973-011-1570-1. DOI
Rahhal V., Cabrera O., Talero R., Delgado A. Calorimetry of Portland cement with silica fume and gypsum additions. J. Therm. Anal. Calorim. 2007;87:331–337. doi: 10.1007/s10973-005-7324-1. DOI
Brandštetr J., Polcer J., Krátký J., Holešinský R., Havlica J. Possibilities of the use of isoperibolic calorimetry for assessing the hydration behaviour of cementitious systems. Cem. Concr. Res. 2001;31:941–947. doi: 10.1016/S0008-8846(01)00495-1. DOI
Shanahan N., Tran V., Zayed A. Heat of hydration prediction for blended cements. J. Therm. Anal. Calorim. 2016;128:1279–1291. doi: 10.1007/s10973-016-6059-5. DOI
European Committee for Standardization . European Standard: Methods of Testing Cement—Part 9: Heat of Hydration—Semi-Adiabatic Method. CEN; Brussels, Belgium: 2010.
Siler P., Kolarova I., Kratky J., Havlica J., Brandstetr J. Influence of superplasticizers on the course of Portland cement hydration. Chem. Pap. 2014;68:90–97. doi: 10.2478/s11696-013-0413-x. DOI
Ježo L., Palou M., Kozánková J., Ifka T. Determination of activation effect of Ca(OH)2 upon the hydration of BFS and related heat by isothermal calorimeter. J. Therm. Anal. Calorim. 2010;101:585–593. doi: 10.1007/s10973-010-0849-y. DOI
Šoukal F., Koplík J., Ptáček P., Opravil T., Havlica J., Palou M.T., Kalina L. The influence of pH buffers on hydration of hydraulic phases in system CaO–Al2O3. J. Therm. Anal. Calorim. 2016;124:629–638. doi: 10.1007/s10973-015-5190-z. DOI
Gruyaert E., Robeyst N., De Belie N. Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry. J. Therm. Anal. Calorim. 2010;102:941–951. doi: 10.1007/s10973-010-0841-6. DOI
Haines P.J. Principles of Thermal Analysis and Calorimetry. Royal Society of Chemistry; Cambridge, UK: 2002.
Bensted J. Some applications of conduction calorimetry to cement hydration. Adv. Cem. Res. 1987;1:35–44. doi: 10.1680/adcr.1987.1.1.35. DOI
De Schutter G., Taerwe L. General hydration model for Portland cement and blast furnace slag cement. Cem. Concr. Res. 1995;25:593–604. doi: 10.1016/0008-8846(95)00048-H. DOI
De Schutter G. Ph.D. Thesis. Ghent University; Ghent, Belgium: 1996. Fundamental and Practical Study of Thermal Stresses in Hardening Massive Concrete Elements.
Poppe A.-M., De Schutter G. Cement hydration in the presence of high filler contents. Cem. Concr. Res. 2005;35:2290–2299. doi: 10.1016/j.cemconres.2005.03.008. DOI
Maciel M.H., Soares G.S., Romano R.C.D.O., Cincotto M.A. Monitoring of Portland cement chemical reaction and quantification of the hydrated products by XRD and TG in function of the stoppage hydration technique. J. Therm. Anal. Calorim. 2018;136:1269–1284. doi: 10.1007/s10973-018-7734-5. DOI
Novotný R., Bartoníčková E., Švec J., Mončeková M. Influence of active alumina on the hydration process of Portland cement. Procedia Eng. 2016;151:80–86. doi: 10.1016/j.proeng.2016.07.383. DOI
Da Silva R., Reis C.A.R.J.P., Lameiras F.S., Vasconcelos W.L. Carbonation-related microstructural changes in long-term durability concrete. Mater. Res. 2002;5:287–293. doi: 10.1590/S1516-14392002000300012. DOI