Application of Isothermal and Isoperibolic Calorimetry to Assess the Effect of Zinc on Hydration of Cement Blended with Slag

. 2019 Sep 10 ; 12 (18) : . [epub] 20190910

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31510096

Grantová podpora
GA19-16646S Czech science foundation

This work deals with the influence of zinc on cement hydration. The amount of zinc in cement has increased over recent years. This is mainly due to the utilization of solid waste and tires, which are widely used as a fuel in a rotary kiln. Zinc can also be introduced to cement through such secondary raw materials as slag, due to increased recycling of galvanized materials. The aim of this work was to determine the effect of zinc on the hydration of Portland cement, blended with ground blast furnace slag (GBFS). This effect was studied by isothermal and isoperibolic calorimetry. Both calorimetry methods are suitable for measurements during the first days of hydration. Isoperibolic calorimetry monitors the hydration process in real-life conditions, while isothermal calorimetry does so at a defined chosen temperature. Zinc was added to the cement in the form of two soluble salts, namely Zn(NO3)2, ZnCl2, and a poorly soluble compound, ZnO. The concentration of added zinc was chosen to be 0.05, 0.1, 0.5, and 1mass percent. The amount of GBFS replacement was 15% of cement dosage. The newly formed hydration products were identified by X-ray diffraction method (XRD).

Zobrazit více v PubMed

Glasser F.P., Marchand J., Samson E. Durability of concrete—Degradation phenomena involving detrimental chemical reactions. Cem. Concr. Res. 2008;38:226–246. doi: 10.1016/j.cemconres.2007.09.015. DOI

Lawrence C.D. The production of low-energy cements. In: Hewlett P.C., editor. Lea’s Chemistry of Cement and Concrete. 4th ed. Butterworth-Heinemann; Oxford, UK: 2004. pp. 421–470.

Palou M.T., Šoukal F., Boháč M., Šiler P., Ifka T., Živica V. Performance of G-Oil Well cement exposed to elevated hydrothermal curing conditions. J. Therm. Anal. Calorim. 2014;118:865–874. doi: 10.1007/s10973-014-3917-x. DOI

Dweck J., Melchert M.B.M., Cartledge F.K., Leonardo R.S., Filho R.D.T. A comparative study of hydration kinetics of different cements by thermogravimetry on calcined mass basis. J. Therm. Anal. Calorim. 2016;128:1335–1342. doi: 10.1007/s10973-016-6080-8. DOI

Li C., Lu X., Jing G., Ye Z., Wang S., Cheng X. The effect of gypsum on the hydration of alite–belite–ferrite phase system. J. Therm. Anal. Calorim. 2018;136:717–724. doi: 10.1007/s10973-018-7643-7. DOI

Gawlicki M., Czamarska D. Effect of ZnO on the hydration of Portland cement. J. Therm. Anal. Calorim. 1992;38:2157–2161. doi: 10.1007/BF01979629. DOI

Gineys N., Aouad G., Damidot D. Managing trace elements in Portland cement—Part I: Interactions between cement paste and heavy metals added during mixing as soluble salts. Cem. Concr. Compos. 2010;32:563–570. doi: 10.1016/j.cemconcomp.2010.06.002. DOI

Gineys N., Aouad G., Damidot D. Managing trace elements in Portland cement—Part II: Comparison of two methods to incorporate Zn in cement. Cement and concrete composites. Cem. Concr. Compos. 2011;33:629–636. doi: 10.1016/j.cemconcomp.2011.03.008. DOI

Murat M., Sorrentino F. Effect of large additions of Cd, Pb, Cr, Zn to cement raw metal on the composition and the properties of the clinker and cement. Cem. Concr. Res. 1996;26:377–385. doi: 10.1016/S0008-8846(96)85025-3. DOI

Andrade F.R.D., Maringolo V., Kihara Y. Incorporation of V, Zn and Pb into the crystalline phases of Portland clinker. Cem. Concr. Res. 2003;33:63–71. doi: 10.1016/S0008-8846(02)00928-6. DOI

Olmo I.F., Chacon E., Irabien A. Influence of lead, zinc, iron (III) and chromium (III) oxides the setting time and strength development of Portland cement. Cem. Concr. Res. 2001;31:1213–1219. doi: 10.1016/S0008-8846(01)00545-2. DOI

Barbir D. Effects of Mud from a Zinc-plating Plant and Zeolite Saturated with Zinc on Portland Cement Hydration and Properties of Hardened Cement Pastes. Chem. Biochem. Eng. Q. 2017;30:401–409. doi: 10.15255/CABEQ.2016.846. DOI

Chen Q.Y., Tyrer M., Hills C.D., Yang X.M., Carey P. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review. Waste Manag. 2009;29:390–403. doi: 10.1016/j.wasman.2008.01.019. PubMed DOI

Weeks C., Hand R.J., Sharp J.H. Retardation of cement hydration caused by heavy metals present in ISF slag used as aggregate. Cem. Concr. Compos. 2008;30:970–978. doi: 10.1016/j.cemconcomp.2008.07.005. DOI

Trussell S., Spence R.D. A review of solidification/stabilization interferences. Waste Manag. 1994;6:507–519. doi: 10.1016/0956-053X(94)90134-1. DOI

Asavapisit S., Fowler G., Cheeseman C.R. Solution chemistry during cement hydration in the presence of metal hydroxide wastes. Cem. Concr. Res. 1997;27:1249–1260. doi: 10.1016/S0008-8846(97)00109-9. DOI

Hamilton I.W., Sammes N.M. Encapsulation of steel foundry bag house dusts in cement mortar. Cem. Concr. Res. 1999;29:55–61. doi: 10.1016/S0008-8846(98)00169-0. DOI

Qian G.R., Shiy J., Cao Y.L., Xu Y.F., Chui P.C. Properties of MSW fly ash–calcium sulfoaluminate cement matrix and stabilization/solidification on heavy metals. J. Hazard. Mater. 2007;152:196–203. doi: 10.1016/j.jhazmat.2007.06.118. PubMed DOI

Ataie F.F., Juenger M.C.G., Taylor-Lange S.C., Riding K.A. Comparison of the retarding mechanisms of zinc oxide and sucrose on cement hydration and interactions with supplementary cementitious materials. Cem. Concr. Res. 2015;72:128–136. doi: 10.1016/j.cemconres.2015.02.023. DOI

Ziegler F., Scheidegger A.M., Johnson C.A., Dähn R., Wieland E. Sorption Mechanisms of Zinc to Calcium Silicate Hydrate: X-ray absorption fine structure (XAFS) investigation. Environ. Sci. Technol. 2001;35:1550–1555. doi: 10.1021/es001437+. PubMed DOI

Rose J., Moulin I., Masion A., Bertsch P.M., Wiesner M.R., Bottero J.-Y., Mosnier F., Haehnel C. X-ray Absorption Spectroscopy Study of Immobilization Processes for Heavy Metals in Calcium Silicate Hydrates. 2. Zinc. Langmuir. 2001;17:3658–3665. doi: 10.1021/la001302h. DOI

Ziegler F., Gieré R., Johnson C.A. Sorption Mechanisms of Zinc to Calcium Silicate Hydrate: Sorption and Microscopic Investigations. Environ. Sci. Technol. 2001;35:4556–4561. doi: 10.1021/es001768m. PubMed DOI

Stumm A., Garbev K., Beuchle G., Black L., Stemmermann P., Nüesch R. Incorporation of zinc into calcium silicate hydrates, Part I: Formation of C-S-H(I) with C/S=2/3 and its isochemical counterpart gyrolite. Cem. Concr. Res. 2005;35:1665–1675. doi: 10.1016/j.cemconres.2004.11.007. DOI

Johnson C.A., Kersten M. Solubility of Zn(II) in Association with Calcium Silicate Hydrates in Alkaline Solutions. Environ. Sci. Technol. 1999;33:2296–2298. doi: 10.1021/es9808651. DOI

Ziegler F., Johnson C.A. The solubility of calcium zincate (CaZn2(OH)6.2H2O) Cem. Concr. Res. 2001;31:1327–1332. doi: 10.1016/S0008-8846(01)00557-9. DOI

McWhitnney H.G., Cocke D.L. A surface study of the chemistry of zinc, cadmium and mercury in Portland cement. Waste Manag. 1993;13:117–123. doi: 10.1016/0956-053X(93)90003-F. DOI

Nochaiya T., Sekine Y., Choooun S., Chaipanich A. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive. J. Alloys Compd. 2015;630:1–10. doi: 10.1016/j.jallcom.2014.11.043. DOI

Li X.G., Yin X.B., Ma B.G., Wu B., Chen Q., Lv Y. Investigation on Hydration Characteristics of Zinc-Doped Portland Cement Pastes. Adv. Mater. Res. 2010;168–170:623–627. doi: 10.4028/www.scientific.net/AMR.168-170.623. DOI

Šiler P., Kolářová I., Novotný R., Másilko J., Pořízka J., Bednárek J., Švec J., Opravil T. Application of isothermal and isoperibolic calorimetry to assess the effect of zinc on cement hydration. J. Therm. Anal. Calorim. 2017;133:27–40. doi: 10.1007/s10973-017-6815-1. PubMed DOI

Coppola L., Coffetti D., Crotti E., Gazzaniga G., Pastore T. An Empathetic Added Sustainability Index (EASI) for Cementitious Based Construction Materials. J. Clean. Prod. 2019;220:475–482. doi: 10.1016/j.jclepro.2019.02.160. DOI

Bougara A., Lynsdale C., Milestone N.B. The influence of slag properties, mix parameters and curing temperature on hydration and strength development of slag/cement blends. Constr. Build. Mater. 2018;187:339–347. doi: 10.1016/j.conbuildmat.2018.07.166. DOI

Kledyński Z., Machowska A., Pacewska B., Wilińska I. Investigation of hydration products of fly ash–slag pastes. J. Therm. Anal. Calorim. 2017;130:351–363. doi: 10.1007/s10973-017-6233-4. DOI

Ogirigbo O.R., Black L. Influence of slag composition and temperature on the hydration and microstructure of slag blended cements. Constr. Build. Mater. 2016;126:496–507. doi: 10.1016/j.conbuildmat.2016.09.057. DOI

Kalinkin A.M., Gurevich B.I., Myshenkov M.S., Kalinkina E.V., Zvereva I.A. A calorimetric study of hydration of magnesia-ferriferous slag mechanically activated in air and in CO2 atmosphere. J. Therm. Anal. Calorim. 2018;134:165–171. doi: 10.1007/s10973-018-7439-9. DOI

Castellano C., Bonavetti V., Donza H., Irassar E. The effect of w/b and temperature on the hydration and strength of blast furnace slag cements. Constr. Build. Mater. 2016;111:679–688. doi: 10.1016/j.conbuildmat.2015.11.001. DOI

Šiler P., Bayer P., Sehnal T., Kolářová I., Opravil T., Šoukal F. Effects of high-temperature fly ash and fluidized bed combustion ash on the hydration of Portland cement. Constr. Build. Mater. 2015;78:181–188. doi: 10.1016/j.conbuildmat.2015.01.032. DOI

Siler P., Kratky J., Kolarova I., Havlica J., Brandstetr J. Calorimetric determination of the effect of additives on cement hydration process. Chem. Pap. 2013;67:213–220. doi: 10.2478/s11696-012-0256-x. DOI

Siler P., Kratky J., De Belie N. Isothermal and solution calorimetry to assess the effect of superplasticizers and mineral admixtures on cement hydration. J. Therm. Anal. Calorim. 2012;107:313–320. doi: 10.1007/s10973-011-1479-8. DOI

Pacewska B., Wilińska I., Nowacka M. Studies on the influence of different fly ashes and Portland cement on early hydration of calcium aluminate cement. J. Therm. Anal. Calorim. 2011;106:859–868. doi: 10.1007/s10973-011-1570-1. DOI

Rahhal V., Cabrera O., Talero R., Delgado A. Calorimetry of Portland cement with silica fume and gypsum additions. J. Therm. Anal. Calorim. 2007;87:331–337. doi: 10.1007/s10973-005-7324-1. DOI

Brandštetr J., Polcer J., Krátký J., Holešinský R., Havlica J. Possibilities of the use of isoperibolic calorimetry for assessing the hydration behaviour of cementitious systems. Cem. Concr. Res. 2001;31:941–947. doi: 10.1016/S0008-8846(01)00495-1. DOI

Shanahan N., Tran V., Zayed A. Heat of hydration prediction for blended cements. J. Therm. Anal. Calorim. 2016;128:1279–1291. doi: 10.1007/s10973-016-6059-5. DOI

European Committee for Standardization . European Standard: Methods of Testing Cement—Part 9: Heat of Hydration—Semi-Adiabatic Method. CEN; Brussels, Belgium: 2010.

Siler P., Kolarova I., Kratky J., Havlica J., Brandstetr J. Influence of superplasticizers on the course of Portland cement hydration. Chem. Pap. 2014;68:90–97. doi: 10.2478/s11696-013-0413-x. DOI

Ježo L., Palou M., Kozánková J., Ifka T. Determination of activation effect of Ca(OH)2 upon the hydration of BFS and related heat by isothermal calorimeter. J. Therm. Anal. Calorim. 2010;101:585–593. doi: 10.1007/s10973-010-0849-y. DOI

Šoukal F., Koplík J., Ptáček P., Opravil T., Havlica J., Palou M.T., Kalina L. The influence of pH buffers on hydration of hydraulic phases in system CaO–Al2O3. J. Therm. Anal. Calorim. 2016;124:629–638. doi: 10.1007/s10973-015-5190-z. DOI

Gruyaert E., Robeyst N., De Belie N. Study of the hydration of Portland cement blended with blast-furnace slag by calorimetry and thermogravimetry. J. Therm. Anal. Calorim. 2010;102:941–951. doi: 10.1007/s10973-010-0841-6. DOI

Haines P.J. Principles of Thermal Analysis and Calorimetry. Royal Society of Chemistry; Cambridge, UK: 2002.

Bensted J. Some applications of conduction calorimetry to cement hydration. Adv. Cem. Res. 1987;1:35–44. doi: 10.1680/adcr.1987.1.1.35. DOI

De Schutter G., Taerwe L. General hydration model for Portland cement and blast furnace slag cement. Cem. Concr. Res. 1995;25:593–604. doi: 10.1016/0008-8846(95)00048-H. DOI

De Schutter G. Ph.D. Thesis. Ghent University; Ghent, Belgium: 1996. Fundamental and Practical Study of Thermal Stresses in Hardening Massive Concrete Elements.

Poppe A.-M., De Schutter G. Cement hydration in the presence of high filler contents. Cem. Concr. Res. 2005;35:2290–2299. doi: 10.1016/j.cemconres.2005.03.008. DOI

Maciel M.H., Soares G.S., Romano R.C.D.O., Cincotto M.A. Monitoring of Portland cement chemical reaction and quantification of the hydrated products by XRD and TG in function of the stoppage hydration technique. J. Therm. Anal. Calorim. 2018;136:1269–1284. doi: 10.1007/s10973-018-7734-5. DOI

Novotný R., Bartoníčková E., Švec J., Mončeková M. Influence of active alumina on the hydration process of Portland cement. Procedia Eng. 2016;151:80–86. doi: 10.1016/j.proeng.2016.07.383. DOI

Da Silva R., Reis C.A.R.J.P., Lameiras F.S., Vasconcelos W.L. Carbonation-related microstructural changes in long-term durability concrete. Mater. Res. 2002;5:287–293. doi: 10.1590/S1516-14392002000300012. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...