Use of Isothermal and Isoperibolic Calorimetry to Study the Effect of Zinc on Hydration of Cement Blended with Fly Ash

. 2020 Nov 18 ; 13 (22) : . [epub] 20201118

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33218145

Grantová podpora
GA19-16646S Czech science foundation

Increasing utilization of secondary raw materials and alternative fuels results in increasing contents of metals in cements. Zinc is one of these elements. It comes to cement with secondary raw materials such as slag or fly ash or by the utilization of used tires as an alternative fuel. Zinc ions significantly prolong the hydration process in cement. This work deals with the influence of zinc ions in the form of very poorly soluble ZnO salt and easily soluble ZnCl2 and Zn(NO3)2 on the hydration of cement blended with fly ash. Zinc was dosed in the range of 0.05%, 0.1%, 0.5% and 1% of cement weight. The effect of zinc on hydration was monitored by isothermal and isoperibolic calorimetry. A 15% addition of fly ash to cement mainly causes further retardation of hydration reactions due to the reactions of fly ash particles with Ca2+ ions from cement. The strongest effect on the hydration retardation from all investigated compounds showed in ZnO as it dissolves very slowly. On the contrary, for the dosage of 1% of zinc in the form of ZnCl2 significant acceleration of hydration occurred. In this work, a synergistic effect on the prolongation of hydration with a combination of cement, zinc and fly ash was demonstrated. The lengths of induction periods were assessed from detected calorimetric curves and from these lengths the curves were gained by fitting with the exponential function. Final products were next analyzed using X-ray diffraction.

Zobrazit více v PubMed

Lawrence C.D. The production of low-energy cements. In: Hewlett P.C., editor. Lea’s Chemistry of Cement and Concrete. 4th ed. Arnold; London, UK: Sydney, Australia: Auckland, New Zealand: 1998. pp. 421–470.

Palou M.T., Šoukal F., Boháč M., Šiler P., Ifka T., Živica V. Performance of G-Oil Well cement exposed to elevated hydrothermal curing conditions. J. Therm. Anal. Calorim. 2014;118:865–874. doi: 10.1007/s10973-014-3917-x. DOI

Dweck J., Melchert M.B.M., Cartledge F.K., Leonardo R.S., Filho R.D.T. A comparative study of hydration kinetics of different cements by thermogravimetry on calcined mass basis. J. Therm. Anal. Calorim. 2016;128:1335–1342. doi: 10.1007/s10973-016-6080-8. DOI

Li C., Lu X., Jing G., Ye Z., Wang S., Cheng X. The effect of gypsum on the hydration of alite–belite–ferrite phase system. J. Therm. Anal. Calorim. 2019;136:717–724. doi: 10.1007/s10973-018-7643-7. DOI

Gineys N., Aouad G., Sorrentino F., Damidot D. Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn. Cem. Concr. Res. 2011;41:1177–1184. doi: 10.1016/j.cemconres.2011.07.006. DOI

Gineys N., Aouad G., Damidot D. Managing trace elements in Portland cement—Part II: Comparison of two methods to incorporate Zn in cement. Cement and concrete composites. Cem. Concr. Compos. 2011;33:629–636. doi: 10.1016/j.cemconcomp.2011.03.008. DOI

Gawlicki M., Czamarska D. Effect of ZnO on the hydration of Portland cement. J. Therm. Anal. Calorim. 1992;38:2157–2161. doi: 10.1007/BF01979629. DOI

Ataie F., Juenger M.C.G., Taylor-Lange S.C., Riding K.A. Comparison of the retarding mechanisms of zinc oxide and sucrose on cement hydration and interactions with supplementary cementitious materials. Cem. Concr. Res. 2015;72:128–136. doi: 10.1016/j.cemconres.2015.02.023. DOI

Kumar A., Walder B.J., Kunhi Mohamed A., Hofstetter A., Srinivasan B., Rossini A.J., Scrivener K., Emsley L., Bowen P. The Atomic-Level Structure of Cementitious Calcium Silicate Hydrate. J. Phys. Chem. C. 2017;121:17188–17196. doi: 10.1021/acs.jpcc.7b02439. DOI

Andalibi M.R., Kumar A., Srinivasan B., Bowen P., Scrivener K., Ludwik C., Testino A. On the mesoscale mechanism of synthetic calcium–silicate–hydrate precipitation: A population balance modeling approach. J. Mater. Chem. A. 2018;6:363–373. doi: 10.1039/C7TA08784E. DOI

Chen Q.Y., Tyrer M., Hills C.D., Yang X.M., Carey P. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review. Waste Manag. 2009;29:390–403. doi: 10.1016/j.wasman.2008.01.019. PubMed DOI

Odler I., Schmidt O. Structure and Properties of Portland Cement Clinker Doped with Zinc Oxide. J. Am. Ceram. Soc. 1980;63:13–16. doi: 10.1111/j.1151-2916.1980.tb10638.x. DOI

Xiong K., Zhang J., Zhu Y., Chen L., Ye L. Zinc doping induced differences in the surface composition, surface morphology and osteogenesis performance of the calcium phosphate cement hydration products. Mater. Sci. Eng. C. 2019;105 doi: 10.1016/j.msec.2019.110065. PubMed DOI

Bolio-Arceo H., Glasser F. Zinc oxide in Portland cement. Part II: Hydration, strength gain and hydrate mineralogy. Adv. Cem. Res. 2000;12:173–179. doi: 10.1680/adcr.2000.12.4.173. DOI

Frigione G. Cement Technology. Pergamon Press; New York, NY, USA: 1983. Gypsum in cement; pp. 485–535.

Li X.G., Yin X.B., Ma B.G., Wu B., Chen Q., Lv Y. Investigation on Hydration Characteristics of Zinc-Doped Portland Cement Pastes. Adv. Mater. Res. 2010;168–170:623–627. doi: 10.4028/www.scientific.net/AMR.168-170.623. DOI

Šiler P., Kolářová I., Novotný R., Másilko J., Pořízka J., Bednárek J., Švec J., Opravil T. Application of isothermal and isoperibolic calorimetry to assess the effect of zinc on cement hydration. J. Therm. Anal. Calorim. 2017;133:27–40. doi: 10.1007/s10973-017-6815-1. DOI

Šiler P., Kolářová I., Novotný R., Másilko J., Bednárek J., Janča M., Koplík J., Hajzler J., Matějka L., Marko M., et al. Application of Isothermal and Isoperibolic Calorimetry to Assess the Effect of Zinc on Hydration of Cement Blended with Slag. Materials. 2019;12:2930. doi: 10.3390/ma12182930. PubMed DOI PMC

Gajić G., Mitrović M., Pavlović P. Phytomanagement Polluted Sites. Elsevier; Amsterdam, The Netherlands: 2019. Ecorestoration of Fly Ash Deposits by Native Plant Species at Thermal Power Stations in Serbia; pp. 113–177.

Nowoświat A., Golazsewski J. Influence of the Variability of Calcareous Fly Ash Properties on Rheological Properties of Fresh Mortar with Its Addition. Materials. 2019;12:1942. doi: 10.3390/ma12121942. PubMed DOI PMC

Kuzielová E., Žemlička M., Janča M., Šiler P., Palou M.T. Later stages of Portland cement hydration influenced by different portions of silica fume, metakaolin and ground granulated blast-furnace slag. J. Therm. Anal. Calorim. 2020 doi: 10.1007/s10973-020-09520-2. DOI

Ghassemi M., Andersen P.K., Ghassemi A., Chianelli R.R. Hazardous Waste from Fossil Fuels. Encycl. Energy. 2004;2004:119–131.

Ramachandra R.S. Resource Recovery and Recycling from Metallurgical Wastes. Elsevier; Amsterdam, The Netherlands: 2006. Metallurgical Slags, Dust and Fumes; pp. 269–327.

Nagib S., Inoue K. Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching. Hydrometallurgy. 2000;56:269–292. doi: 10.1016/S0304-386X(00)00073-6. DOI

Brandštetr J., Polcer J., Krátký J., Holešinský R., Havlica J. Possibilities of the use of isoperibolic calorimetry for assessing the hydration behaviour of cementitious systems. Cem. Concr. Res. 2001;31:941–947. doi: 10.1016/S0008-8846(01)00495-1. DOI

Shanahan N., Tran V., Zayed A. Heat of hydration prediction for blended cements. J. Therm. Anal. Calorim. 2016;128:1279–1291. doi: 10.1007/s10973-016-6059-5. DOI

Novotný R., Bartoníčková E., Švec J., Mončeková M. Influence of active alumina on the hydration process of Portland cement. Procedia Eng. 2016;151:80–86. doi: 10.1016/j.proeng.2016.07.383. DOI

Siler P., Kratky J., De Belie N. Isothermal and solution calorimetry to assess the effect of superplasticizers and mineral admixtures on cement hydration. J. Therm. Anal. Calorim. 2012;107:313–320. doi: 10.1007/s10973-011-1479-8. DOI

ASTM C1679-17, Standard Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry. ASTM International; West Conshohocken, PA, USA: 2017.

Šiler P., Bayer P., Sehnal T., Kolářová I., Opravil T., Šoukal F. Effects of high-temperature fly ash and fluidized bed combustion ash on the hydration of Portland cement. Constr. Build. Mater. 2015;78:181–188. doi: 10.1016/j.conbuildmat.2015.01.032. DOI

Siler P., Kratky J., Kolarova I., Havlica J., Brandstetr J. Calorimetric determination of the effect of additives on cement hydration process. Chem. Pap. 2013;67:213–220. doi: 10.2478/s11696-012-0256-x. DOI

Siler P., Kolarova I., Kratky J., Havlica J., Brandstetr J. Influence of superplasticizers on the course of Portland cement hydration. Chem. Pap. 2014;68:90–97. doi: 10.2478/s11696-013-0413-x. DOI

Patel J.P., Parsania P.H. Biodegradable and Biocompatible Polymer Composites. Elsevier; Amsterdam, The Netherlands: 2018. Characterization, testing, and reinforcing materials of biodegradable composites; pp. 55–79.

Kohli R., Mittal K.L., editors. Developments in Surface Contamination and Cleaning. Volume 12 Elsevier; Oxford, UK: 2019.

Liu J., Jin H., Gu C., Yang Y. Effects of zinc oxide nanoparticles on early-age hydration and the mechanical properties of cement paste. Constr. Build. Mater. 2019;217:352–362. doi: 10.1016/j.conbuildmat.2019.05.027. DOI

Singh N., Ojha P. Effect of CaCl2 on the hydration of tricalcium silicate. J. Mater. Sci. 1981;16:2675–2681. doi: 10.1007/BF02402829. DOI

Peterson V., Juenger M. Hydration of Tricalcium Silicate: Effects of CaCl and Sucrose on Reaction Kinetics and Product Formation. Chem. Mater. 2006;18:5798–5804. doi: 10.1021/cm061724y. DOI

Aggoun S., Cheikh-Zouaoui M., Chikh N., Duval R. Effect of some admixtures on the setting time and strength evolution of cement pastes at early ages. Constr. Build. Mater. 2008;22:106–110. doi: 10.1016/j.conbuildmat.2006.05.043. DOI

Justnes H., Nygaard E. Technical calcium nitrate as set accelerator for cement at low temperatures. Cem. Concr. Res. 1995;25:1766–1774. doi: 10.1016/0008-8846(95)00172-7. DOI

Shafeek A.M., Khedr M.H., El-Dek S., Shehata N. Influence of ZnO nanoparticle ratio and size on mechanical properties and whiteness of White Portland Cement. Appl. Nanosci. 2020;10:3603–3615. doi: 10.1007/s13204-020-01444-5. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...