Use of Isothermal and Isoperibolic Calorimetry to Study the Effect of Zinc on Hydration of Cement Blended with Fly Ash
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA19-16646S
Czech science foundation
PubMed
33218145
PubMed Central
PMC7698924
DOI
10.3390/ma13225215
PII: ma13225215
Knihovny.cz E-zdroje
- Klíčová slova
- fly ash, isoperibolic calorimetry, isothermal calorimetry, portland cement, zinc,
- Publikační typ
- časopisecké články MeSH
Increasing utilization of secondary raw materials and alternative fuels results in increasing contents of metals in cements. Zinc is one of these elements. It comes to cement with secondary raw materials such as slag or fly ash or by the utilization of used tires as an alternative fuel. Zinc ions significantly prolong the hydration process in cement. This work deals with the influence of zinc ions in the form of very poorly soluble ZnO salt and easily soluble ZnCl2 and Zn(NO3)2 on the hydration of cement blended with fly ash. Zinc was dosed in the range of 0.05%, 0.1%, 0.5% and 1% of cement weight. The effect of zinc on hydration was monitored by isothermal and isoperibolic calorimetry. A 15% addition of fly ash to cement mainly causes further retardation of hydration reactions due to the reactions of fly ash particles with Ca2+ ions from cement. The strongest effect on the hydration retardation from all investigated compounds showed in ZnO as it dissolves very slowly. On the contrary, for the dosage of 1% of zinc in the form of ZnCl2 significant acceleration of hydration occurred. In this work, a synergistic effect on the prolongation of hydration with a combination of cement, zinc and fly ash was demonstrated. The lengths of induction periods were assessed from detected calorimetric curves and from these lengths the curves were gained by fitting with the exponential function. Final products were next analyzed using X-ray diffraction.
Zobrazit více v PubMed
Lawrence C.D. The production of low-energy cements. In: Hewlett P.C., editor. Lea’s Chemistry of Cement and Concrete. 4th ed. Arnold; London, UK: Sydney, Australia: Auckland, New Zealand: 1998. pp. 421–470.
Palou M.T., Šoukal F., Boháč M., Šiler P., Ifka T., Živica V. Performance of G-Oil Well cement exposed to elevated hydrothermal curing conditions. J. Therm. Anal. Calorim. 2014;118:865–874. doi: 10.1007/s10973-014-3917-x. DOI
Dweck J., Melchert M.B.M., Cartledge F.K., Leonardo R.S., Filho R.D.T. A comparative study of hydration kinetics of different cements by thermogravimetry on calcined mass basis. J. Therm. Anal. Calorim. 2016;128:1335–1342. doi: 10.1007/s10973-016-6080-8. DOI
Li C., Lu X., Jing G., Ye Z., Wang S., Cheng X. The effect of gypsum on the hydration of alite–belite–ferrite phase system. J. Therm. Anal. Calorim. 2019;136:717–724. doi: 10.1007/s10973-018-7643-7. DOI
Gineys N., Aouad G., Sorrentino F., Damidot D. Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn. Cem. Concr. Res. 2011;41:1177–1184. doi: 10.1016/j.cemconres.2011.07.006. DOI
Gineys N., Aouad G., Damidot D. Managing trace elements in Portland cement—Part II: Comparison of two methods to incorporate Zn in cement. Cement and concrete composites. Cem. Concr. Compos. 2011;33:629–636. doi: 10.1016/j.cemconcomp.2011.03.008. DOI
Gawlicki M., Czamarska D. Effect of ZnO on the hydration of Portland cement. J. Therm. Anal. Calorim. 1992;38:2157–2161. doi: 10.1007/BF01979629. DOI
Ataie F., Juenger M.C.G., Taylor-Lange S.C., Riding K.A. Comparison of the retarding mechanisms of zinc oxide and sucrose on cement hydration and interactions with supplementary cementitious materials. Cem. Concr. Res. 2015;72:128–136. doi: 10.1016/j.cemconres.2015.02.023. DOI
Kumar A., Walder B.J., Kunhi Mohamed A., Hofstetter A., Srinivasan B., Rossini A.J., Scrivener K., Emsley L., Bowen P. The Atomic-Level Structure of Cementitious Calcium Silicate Hydrate. J. Phys. Chem. C. 2017;121:17188–17196. doi: 10.1021/acs.jpcc.7b02439. DOI
Andalibi M.R., Kumar A., Srinivasan B., Bowen P., Scrivener K., Ludwik C., Testino A. On the mesoscale mechanism of synthetic calcium–silicate–hydrate precipitation: A population balance modeling approach. J. Mater. Chem. A. 2018;6:363–373. doi: 10.1039/C7TA08784E. DOI
Chen Q.Y., Tyrer M., Hills C.D., Yang X.M., Carey P. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review. Waste Manag. 2009;29:390–403. doi: 10.1016/j.wasman.2008.01.019. PubMed DOI
Odler I., Schmidt O. Structure and Properties of Portland Cement Clinker Doped with Zinc Oxide. J. Am. Ceram. Soc. 1980;63:13–16. doi: 10.1111/j.1151-2916.1980.tb10638.x. DOI
Xiong K., Zhang J., Zhu Y., Chen L., Ye L. Zinc doping induced differences in the surface composition, surface morphology and osteogenesis performance of the calcium phosphate cement hydration products. Mater. Sci. Eng. C. 2019;105 doi: 10.1016/j.msec.2019.110065. PubMed DOI
Bolio-Arceo H., Glasser F. Zinc oxide in Portland cement. Part II: Hydration, strength gain and hydrate mineralogy. Adv. Cem. Res. 2000;12:173–179. doi: 10.1680/adcr.2000.12.4.173. DOI
Frigione G. Cement Technology. Pergamon Press; New York, NY, USA: 1983. Gypsum in cement; pp. 485–535.
Li X.G., Yin X.B., Ma B.G., Wu B., Chen Q., Lv Y. Investigation on Hydration Characteristics of Zinc-Doped Portland Cement Pastes. Adv. Mater. Res. 2010;168–170:623–627. doi: 10.4028/www.scientific.net/AMR.168-170.623. DOI
Šiler P., Kolářová I., Novotný R., Másilko J., Pořízka J., Bednárek J., Švec J., Opravil T. Application of isothermal and isoperibolic calorimetry to assess the effect of zinc on cement hydration. J. Therm. Anal. Calorim. 2017;133:27–40. doi: 10.1007/s10973-017-6815-1. DOI
Šiler P., Kolářová I., Novotný R., Másilko J., Bednárek J., Janča M., Koplík J., Hajzler J., Matějka L., Marko M., et al. Application of Isothermal and Isoperibolic Calorimetry to Assess the Effect of Zinc on Hydration of Cement Blended with Slag. Materials. 2019;12:2930. doi: 10.3390/ma12182930. PubMed DOI PMC
Gajić G., Mitrović M., Pavlović P. Phytomanagement Polluted Sites. Elsevier; Amsterdam, The Netherlands: 2019. Ecorestoration of Fly Ash Deposits by Native Plant Species at Thermal Power Stations in Serbia; pp. 113–177.
Nowoświat A., Golazsewski J. Influence of the Variability of Calcareous Fly Ash Properties on Rheological Properties of Fresh Mortar with Its Addition. Materials. 2019;12:1942. doi: 10.3390/ma12121942. PubMed DOI PMC
Kuzielová E., Žemlička M., Janča M., Šiler P., Palou M.T. Later stages of Portland cement hydration influenced by different portions of silica fume, metakaolin and ground granulated blast-furnace slag. J. Therm. Anal. Calorim. 2020 doi: 10.1007/s10973-020-09520-2. DOI
Ghassemi M., Andersen P.K., Ghassemi A., Chianelli R.R. Hazardous Waste from Fossil Fuels. Encycl. Energy. 2004;2004:119–131.
Ramachandra R.S. Resource Recovery and Recycling from Metallurgical Wastes. Elsevier; Amsterdam, The Netherlands: 2006. Metallurgical Slags, Dust and Fumes; pp. 269–327.
Nagib S., Inoue K. Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching. Hydrometallurgy. 2000;56:269–292. doi: 10.1016/S0304-386X(00)00073-6. DOI
Brandštetr J., Polcer J., Krátký J., Holešinský R., Havlica J. Possibilities of the use of isoperibolic calorimetry for assessing the hydration behaviour of cementitious systems. Cem. Concr. Res. 2001;31:941–947. doi: 10.1016/S0008-8846(01)00495-1. DOI
Shanahan N., Tran V., Zayed A. Heat of hydration prediction for blended cements. J. Therm. Anal. Calorim. 2016;128:1279–1291. doi: 10.1007/s10973-016-6059-5. DOI
Novotný R., Bartoníčková E., Švec J., Mončeková M. Influence of active alumina on the hydration process of Portland cement. Procedia Eng. 2016;151:80–86. doi: 10.1016/j.proeng.2016.07.383. DOI
Siler P., Kratky J., De Belie N. Isothermal and solution calorimetry to assess the effect of superplasticizers and mineral admixtures on cement hydration. J. Therm. Anal. Calorim. 2012;107:313–320. doi: 10.1007/s10973-011-1479-8. DOI
ASTM C1679-17, Standard Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry. ASTM International; West Conshohocken, PA, USA: 2017.
Šiler P., Bayer P., Sehnal T., Kolářová I., Opravil T., Šoukal F. Effects of high-temperature fly ash and fluidized bed combustion ash on the hydration of Portland cement. Constr. Build. Mater. 2015;78:181–188. doi: 10.1016/j.conbuildmat.2015.01.032. DOI
Siler P., Kratky J., Kolarova I., Havlica J., Brandstetr J. Calorimetric determination of the effect of additives on cement hydration process. Chem. Pap. 2013;67:213–220. doi: 10.2478/s11696-012-0256-x. DOI
Siler P., Kolarova I., Kratky J., Havlica J., Brandstetr J. Influence of superplasticizers on the course of Portland cement hydration. Chem. Pap. 2014;68:90–97. doi: 10.2478/s11696-013-0413-x. DOI
Patel J.P., Parsania P.H. Biodegradable and Biocompatible Polymer Composites. Elsevier; Amsterdam, The Netherlands: 2018. Characterization, testing, and reinforcing materials of biodegradable composites; pp. 55–79.
Kohli R., Mittal K.L., editors. Developments in Surface Contamination and Cleaning. Volume 12 Elsevier; Oxford, UK: 2019.
Liu J., Jin H., Gu C., Yang Y. Effects of zinc oxide nanoparticles on early-age hydration and the mechanical properties of cement paste. Constr. Build. Mater. 2019;217:352–362. doi: 10.1016/j.conbuildmat.2019.05.027. DOI
Singh N., Ojha P. Effect of CaCl2 on the hydration of tricalcium silicate. J. Mater. Sci. 1981;16:2675–2681. doi: 10.1007/BF02402829. DOI
Peterson V., Juenger M. Hydration of Tricalcium Silicate: Effects of CaCl and Sucrose on Reaction Kinetics and Product Formation. Chem. Mater. 2006;18:5798–5804. doi: 10.1021/cm061724y. DOI
Aggoun S., Cheikh-Zouaoui M., Chikh N., Duval R. Effect of some admixtures on the setting time and strength evolution of cement pastes at early ages. Constr. Build. Mater. 2008;22:106–110. doi: 10.1016/j.conbuildmat.2006.05.043. DOI
Justnes H., Nygaard E. Technical calcium nitrate as set accelerator for cement at low temperatures. Cem. Concr. Res. 1995;25:1766–1774. doi: 10.1016/0008-8846(95)00172-7. DOI
Shafeek A.M., Khedr M.H., El-Dek S., Shehata N. Influence of ZnO nanoparticle ratio and size on mechanical properties and whiteness of White Portland Cement. Appl. Nanosci. 2020;10:3603–3615. doi: 10.1007/s13204-020-01444-5. DOI