Evolutionary networks from RADseq loci point to hybrid origins of Medicago carstiensis and Medicago cretacea

. 2019 Sep ; 106 (9) : 1219-1228. [epub] 20190919

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31535720

Grantová podpora
2009-5206 Swedish Research Council - International
625308 FP7- PEOPLE-2013-IEF - International

PREMISE: Although hybridization has played an important role in the evolution of many plant species, phylogenetic reconstructions that include hybridizing lineages have been historically constrained by the available models and data. Restriction-site-associated DNA sequencing (RADseq) has been a popular sequencing technique for the reconstruction of hybridization in the next-generation sequencing era. However, the utility of RADseq for the reconstruction of complex evolutionary networks has not been thoroughly investigated. Conflicting phylogenetic relationships in the genus Medicago have been mainly attributed to hybridization, but the specific hybrid origins of taxa have not been yet clarified. METHODS: We obtained new molecular data from diploid species of Medicago section Medicago using single-digest RADseq to reconstruct evolutionary networks from gene trees, an approach that is computationally tractable with data sets that include several species and complex hybridization patterns. RESULTS: Our analyses revealed that assembly filters to exclusively select a small set of loci with high phylogenetic information led to the most-divergent network topologies. Conversely, alternative clustering thresholds or filters on the number of samples per locus had a lower impact on networks. A strong hybridization signal was detected for M. carstiensis and M. cretacea, while signals were less clear for M. rugosa, M. rhodopea, M. suffruticosa, M. marina, M. scutellata, and M. sativa. CONCLUSIONS: Complex network reconstructions from RADseq gene trees were not robust under variations of the assembly parameters and filters. But when the most-divergent networks were discarded, all remaining analyses consistently supported a hybrid origin for M. carstiensis and M. cretacea.

Zobrazit více v PubMed

Andrews, K. R., J. M. Good, M. R. Miller, G. Luikart, and P. A. Hohenlohe. 2016. Harnessing the power of RADseq for ecological and evolutionary genomics. Nature Reviews Genetics 17: 81-92.

Annicchiarico, P., N. Nazzicari, Y. Wei, L. Pecetti, and E. C. Brummer. 2017. Genotyping-by-sequencing and its exploitation for forage and cool-season grain legume breeding. Frontiers in Plant Science 8: 679.

Baird, N. A., P. D. Etter, T. S. Atwood, M. C. Currey, A. L. Shiver, Z. A. Lewis, E. U. Selker, et al. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. Plos One 3: e3376.

Barker, D. G., S. Bianchi, F. Blondon, Y. Dattée, G. Duc, S. Essad, P. Flament, et al. 1990. Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Molecular Biology Reporter 8: 40-49.

Beaumont, M. A., W. Zhang, and D. J. Balding. 2002. Approximate Bayesian computation in population genetics. Genetics 162: 2025-2035.

Bena, G. 2001. Molecular phylogeny supports the morphologically based taxonomic transfer of the “medicagoid” Trigonella species to the genus Medicago L. Plant Systematics and Evolution 229: 217-236.

Benedito, V. A., I. Torres-Jerez, J. D. Murray, A. Andriankaja, S. Allen, K. Kakar, M. Wandrey, et al. 2008. A gene expression atlas of the model legume Medicago truncatula. Plant Journal 55: 504-513.

Bennett, S. J., D. A. Broughton, and N. Maxted. 2006. Ecogeographical analysis of the perennial Medicago. CRC Salinity Bulletin 1: 1-62.

Blanco-Pastor, J. L., Y. J. K. Bertrand, I. M. Liberal, Y. Wei, E. C. Brummer, and B. E. Pfeil. 2019. Data from: Evolutionary networks from RADseq loci point to hybrid origins of Medicago carstiensis and Medicago cretacea. Dryad Digital Repository. https://doi.org/10.5061/dryad.b6p1qm7.

Bolger, A. M., M. Lohse, and B. Usadel. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.

Branca, A., T. D. Paape, P. Zhou, R. Briskine, A. D. Farmer, J. Mudge, A. K. Bharti, et al. 2011. Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proceedings of the National Academy of Sciences, USA 108: E864-E870.

Cariou, M., L. Duret, and S. Charlat. 2013. Is RAD-seq suitable for phylogenetic inference? An in silico assessment and optimization. Ecology and Evolution 3: 846-852.

Clark, A. G., and P. W. Messer. 2015. Conundrum of jumbled mosquito genomes. Science 347: 27-28.

Cook, D. R. 1999. Medicago truncatula - A model in the making! Current Opinion in Plant Biology 2: 301-304.

Durand, E. Y., N. Patterson, D. Reich, and M. Slatkin. 2011. Testing for ancient admixture between closely related populations. Molecular Biology and Evolution 28: 2239-2252.

Eaton, D. A. R. 2014. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics 30: 1844-1849.

Eaton, D. A. R., and R. H. Ree. 2013. Inferring phylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae). Systematic Biology 62: 689-706.

Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto, E. S. Buckler, and S. E. Mitchell. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6: 1-10.

Eriksson, J. S., J. L. Blanco-Pastor, F. Sousa, Y. J. K. Bertrand, and B. E. Pfeil. 2017. A cryptic species produced by autopolyploidy and subsequent introgression involving Medicago prostrata (Fabaceae). Molecular Phylogenetics and Evolution 107: 367-381.

Eriksson, J. S., F. De Sousa, Y. J. K. Bertrand, A. Antonelli, B. Oxelman, and B. E. Pfeil. 2018. Allele phasing is critical to revealing a shared allopolyploid origin of Medicago arborea and M. strasseri (Fabaceae). BMC Evolutionary Biology 18: 9.

Escudero, M., D. A. R. Eaton, M. Hahn, and A. L. Hipp. 2014. Genotyping-by-sequencing as a tool to infer phylogeny and ancestral hybridization: a case study in Carex (Cyperaceae). Molecular Phylogenetics and Evolution 79: 359-367.

Excoffier, L., I. Dupanloup, E. Huerta-Sánchez, V. C. Sousa, and M. Foll. 2013. Robust demographic inference from genomic and SNP data. PLoS Genetics 9: e1003905.

Fernández-Mazuecos, M., G. Mellers, B. Vigalondo, L. Sáez, P. Vargas, and B. J. Glover. 2017. Resolving recent plant radiations: power and robustness of genotyping-by-sequencing. Systematic Biology 67: 250-268.

Green, R. E., J. Krause, A. W. Briggs, T. Maricic, U. Stenzel, M. Kircher, N. Patterson, et al. 2010. A draft sequence of the neandertal genome. Science 328: 710-722.

Gronau, I., M. J. Hubisz, B. Gulko, C. G. Danko, and A. Siepel. 2011. Bayesian inference of ancient human demography from individual genome sequences. Nature Genetics 43: 1031-1035.

Gutenkunst, R. N., R. D. Hernandez, S. H. Williamson, and C. D. Bustamante. 2009. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genetics 5: e1000695.

Harvey, M. G., B. T. Smith, T. C. Glenn, B. C. Faircloth, and R. T. Brumfield. 2016. Sequence capture versus restriction site associated DNA sequencing for shallow systematics. Systematic Biology 65: 910-924.

Hey, J. 2010. Isolation with migration models for more than two populations. Molecular Biology and Evolution 27: 905-920.

Hipp, A. L., D. A. R. Eaton, J. Cavender-Bares, E. Fitzek, R. Nipper, and P. S. Manos. 2014. A framework phylogeny of the American oak clade based on sequenced RAD data. PLoS ONE 9: e93975.

Hohenlohe, P. A., S. J. Amish, J. M. Catchen, F. W. Allendorf, and G. Luikart. 2011. Next-generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Molecular Ecology Resources 11: 117-122.

Huson, D. H., R. Rupp, and C. Scornavacca. 2010. Phylogenetic networks: concepts, algorithms and applications. Cambridge University Press, Cambridge, UK.

Leaché, A. D., A. S. Chavez, L. N. Jones, J. A. Grummer, A. D. Gottscho, and C. W. Linkem. 2015. Phylogenomics of phrynosomatid lizards: conflicting signals from sequence capture versus restriction site associated DNA sequencing. Genome Biology and Evolution 7: 706-719.

Lesins, K. A., and I. Lesins. 1979. Genus Medicago (Leguminosae). Springer, Dordrecht, Netherlands.

Linder, C. R., and L. H. Rieseberg. 2004. Reconstructing patterns of reticulate evolution in plants. American Journal of Botany 91: 1700-1708.

Maureira-Butler, I. J., B. E. Pfeil, A. Muangprom, T. C. Osborn, and J. J. Doyle. 2008. The reticulate history of Medicago (Fabaceae). Systematic Biology 57: 466-482.

Meyer, M., M. Kircher, M.-T. Gansauge, H. Li, F. Racimo, S. Mallick, J. G. Schraiber, et al. 2012. A high-coverage genome sequence from an archaic Denisovan individual. Science 338: 222-226.

Nakhleh, L. 2010. A metric on the space of reduced phylogenetic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics 7: 218-222.

Pease, J. B., and M. W. Hahn. 2015. Detection and polarization of introgression in a five-taxon phylogeny. Systematic Biology 64: 651-662.

Pickrell, J. K., and J. K. Pritchard. 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS genetics 8: e1002967.

Poland, J. A., P. J. Brown, M. E. Sorrells, and J.-L. Jannink. 2012. Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. Plos One 7: e32253.

Ree, R. H., and A. L. Hipp. 2015. Inferring phylogenetic history from restriction site associated DNA (RADseq). In E. Hörandl and M. Appelhans [eds.], Next-Generation Sequencing in Plant Systematics, 181-204. Koeltz Scientific Books, Kapellenbergstr, Germany.

Rheindt, F. E., M. K. Fujita, P. R. Wilton, and S. V. Edwards. 2014. Introgression and phenotypic assimilation in Zimmerius flycatchers (Tyrannidae): population genetic and phylogenetic inferences from genome-wide SNPs. Systematic Biology 63: 134-152.

Rubin, B. E. R., R. H. Ree, and C. S. Moreau. 2012. Inferring phylogenies from RAD sequence data. PLoS ONE 7: 1-12.

Seehausen, O. 2004. Hybridization and adaptive radiation. Trends in Ecology and Evolution 19: 198-207.

Sethuraman, A., and J. Hey. 2016. IMa2p - parallel MCMC and inference of ancient demography under the isolation with migration (IM) model. Molecular Ecology Resources 16: 206-215.

Shafer, A. B., C. R. Peart, S. Tusso, I. Maayan, A. Brelsford, C. W. Wheat, and J. B. Wolf. 2017. Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods in Ecology and Evolution 8: 907-917.

Small, E. 2011. Alfalfa and relatives: evolution and classification of Medicago. NRC Research Press, Ottawa, Ontario, Canada.

Solís-Lemus, C., and C. Ané. 2016. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genetics 12: 1-32.

Sousa, F. 2015. Next-generation molecular systematics and evolution: insights into Medicago. Ph.D. dissertation, University of Gothenburg, Gothenburg, Sweden.

Sousa, F., Y. J. K. Bertrand, S. Nylinder, B. Oxelman, J. S. Eriksson, and B. E. Pfeil. 2014. Phylogenetic properties of 50 nuclear loci in Medicago (Leguminosae) generated using multiplexed sequence capture and next-generation sequencing. Plos One 9: e109704.

Sousa, F., Y. J. K. Bertrand, J. J. Doyle, B. Oxelman, and B. E. Pfeil. 2017. Using genomic location and coalescent simulation to investigate gene tree discordance in Medicago L. Systematic Biology 66: 934-949.

Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.

Steele, K. P., S. M. Ickert-Bond, S. Zarre, and M. F. Wojciechowski. 2010. Phylogeny and character evolution in Medicago (Leguminosae): evidence from analyses of plastid trnK/matK and nuclear GA3ox1 sequences. American Journal of Botany 97: 1142-1155.

Takahashi, T., N. Nagata, and T. Sota. 2014. Application of RAD-based phylogenetics to complex relationships among variously related taxa in a species flock. Molecular Phylogenetics and Evolution 80: 77-81.

Than, C., D. Ruths, and L. Nakhleh. 2008. PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinformatics 9: 322.

Twyford, A. D., and R. A. Ennos. 2012. Next-generation hybridization and introgression. Heredity 108: 179-189.

Urban, I. 1873. Prodomus einer Monographie der Gattung Medicago L. Verhandlungen des Botanischen Vereins für die Provinz Brandenburg 15: 1-85.

Wagner, C. E., I. Keller, S. Wittwer, O. M. Selz, S. Mwaiko, L. Greuter, A. Sivasundar, and O. Seehausen. 2013. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Molecular Ecology 22: 787-798.

Wang, S., E. Meyer, J. K. McKay, and M. V. Matz. 2012. 2b-RAD: a simple and flexible method for genome-wide genotyping. Nature Methods 9: 808-810.

Wen, D., and L. Nakhleh. 2018. Coestimating reticulate phylogenies and gene trees from multilocus sequence data. Systematic Biology 67: 439-457.

Wen, D., Y. Yu, and L. Nakhleh. 2016. Bayesian inference of reticulate phylogenies under the multispecies network coalescent. PLoS Genetics 12: 1-17.

Wen, D., Y. Yu, J. Zhu, and L. Nakhleh. 2018. Inferring phylogenetic networks using PhyloNet. Systematic Biology 67: 735-740.

Yoder, J. B., R. Briskine, J. Mudge, A. Farmer, T. Paape, K. Steele, G. D. Weiblen, et al. 2013. Phylogenetic signal variation in the genomes of Medicago (Fabaceae). Systematic Biology 62: 424-438.

Young, N. D., F. Debellé, G. E. D. Oldroyd, R. Geurts, S. B. Cannon, M. K. Udvardi, V. A. Benedito, et al. 2011. The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480: 520-524.

Yu, Y., T. Cuong, J. H. Degnan, and L. Nakhleh. 2011. Coalescent histories on phylogenetic networks and detection of hybridization despite incomplete lineage sorting. Systematic Biology 60: 138-149.

Yu, Y., R. M. Barnett, and L. Nakhleh. 2013. Parsimonious inference of hybridization in the presence of incomplete lineage sorting. Systematic Biology 62: 738-751.

Yu, Y., J. Dong, K. J. Liu, and L. Nakhleh. 2014. Maximum likelihood inference of reticulate evolutionary histories. Proceedings of the National Academy of Sciences, USA 111: 16448-16453.

Yu, Y., and L. Nakhleh. 2015. A maximum pseudo-likelihood approach for phylogenetic networks. BMC Genomics.16: S10.

Zhang, C., H. A. Ogilvie, A. J. Drummond, and T. Stadler. 2018. Bayesian inference of species networks from multilocus sequence data. Molecular Biology and Evolution 35: 504-517.

Zhu, J., D. Wen, Y. Yu, H. M. Meudt, and L. Nakhleh. 2017. Bayesian inference of phylogenetic networks from bi-allelic genetic markers. PLoS Computational Biology 14: e1005932.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...