Precipitation mediates sap flux sensitivity to evaporative demand in the neotropics
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
DE-SC-0011806
Office of Science
5231.00639.001.01
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
PubMed
31541317
DOI
10.1007/s00442-019-04513-x
PII: 10.1007/s00442-019-04513-x
Knihovny.cz E-zdroje
- Klíčová slova
- Evapotranspiration, Plant functional traits, Transpiration, Vapor pressure deficit,
- MeSH
- lesy MeSH
- období sucha MeSH
- stromy * MeSH
- tlak par MeSH
- transpirace rostlin * MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- voda MeSH
Transpiration in humid tropical forests modulates the global water cycle and is a key driver of climate regulation. Yet, our understanding of how tropical trees regulate sap flux in response to climate variability remains elusive. With a progressively warming climate, atmospheric evaporative demand [i.e., vapor pressure deficit (VPD)] will be increasingly important for plant functioning, becoming the major control of plant water use in the twenty-first century. Using measurements in 34 tree species at seven sites across a precipitation gradient in the neotropics, we determined how the maximum sap flux velocity (vmax) and the VPD threshold at which vmax is reached (VPDmax) vary with precipitation regime [mean annual precipitation (MAP); seasonal drought intensity (PDRY)] and two functional traits related to foliar and wood economics spectra [leaf mass per area (LMA); wood specific gravity (WSG)]. We show that, even though vmax is highly variable within sites, it follows a negative trend in response to increasing MAP and PDRY across sites. LMA and WSG exerted little effect on vmax and VPDmax, suggesting that these widely used functional traits provide limited explanatory power of dynamic plant responses to environmental variation within hyper-diverse forests. This study demonstrates that long-term precipitation plays an important role in the sap flux response of humid tropical forests to VPD. Our findings suggest that under higher evaporative demand, trees growing in wetter environments in humid tropical regions may be subjected to reduced water exchange with the atmosphere relative to trees growing in drier climates.
AMAP IRD CIRAD CNRS INRA Université de Montpellier Montpellier France
Center for Tropical Forest Science Smithsonian Tropical Research Institute Panama City Panama
Climate and Ecosystem Sciences Division Lawrence Berkeley National Laboratory Berkeley CA USA
Computational Research Division Lawrence Berkeley National Laboratory Berkeley CA USA
Conservation Ecology Center Smithsonian Conservation Biology Institute Front Royal VA USA
Department of Biology University of Maryland College Park MD USA
Department of Ecology and Evolutionary Biology Princeton University Princeton NJ USA
Department of Ecosystem Science and Management Texas A and M University College Station TX USA
Department of Geography University of California Berkeley CA USA
Department of Integrative Biology University of California Berkeley Berkeley CA 94720 3140 USA
Department of Integrative Biology University of Texas at Austin Austin TX USA
Department of Natural Resources and the Environment University of New Hampshire Durham NH 03824 USA
Earth and Environmental Sciences Division Los Alamos National Laboratory Los Alamos NM USA
Earth Systems Science Division Pacific Northwest National Laboratory Richland WA USA
Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
Schmid College of Science and Technology Chapman University Orange CA USA
School of Life Sciences Arizona State University Tempe AZ USA
School of Renewable Natural Resources Louisiana State University Baton Rouge LA USA
Université de Lorraine AgroParisTech INRA UMR Silva Nancy 54000 France
Zachry Department of Civil Engineering Texas A and M University 3136 TAMU College Station TX USA
Zobrazit více v PubMed
Plant Physiol. 2009 Feb;149(2):825-34 PubMed
Tree Physiol. 1997 Jan;17(1):65-7 PubMed
Ann Bot. 2007 May;99(5):1003-15 PubMed
Nat Commun. 2018 Mar 2;9(1):913 PubMed
Glob Chang Biol. 2018 Jan;24(1):35-54 PubMed
Am J Bot. 2004 Mar;91(3):386-400 PubMed
Philos Trans R Soc Lond B Biol Sci. 2005 Feb 28;360(1454):373-84 PubMed
Trends Plant Sci. 2008 Jun;13(6):281-7 PubMed
J Exp Bot. 2007;58(3):627-36 PubMed
Sci Rep. 2015 Oct 30;5:15956 PubMed
Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13730-4 PubMed
Tree Physiol. 2001 Jan;21(1):19-26 PubMed
New Phytol. 2017 Jul;215(1):113-125 PubMed
Tree Physiol. 2012 Apr;32(4):373-88 PubMed
Oecologia. 2013 Dec;173(4):1191-201 PubMed
Tree Physiol. 2016 Dec;36(12):1449-1455 PubMed
New Phytol. 2016 Oct;212(1):80-95 PubMed
Oecologia. 1998 Jul;115(3):306-311 PubMed
Glob Chang Biol. 2014 Oct;20(10):3177-90 PubMed
New Phytol. 2017 Jul;215(1):9-11 PubMed
Oecologia. 2008 May;156(1):31-41 PubMed
Ecol Lett. 2010 Nov;13(11):1338-47 PubMed
Plant Cell Environ. 2017 Jun;40(6):816-830 PubMed
New Phytol. 2012 Sep;195(4):734-6 PubMed
New Phytol. 2018 Sep;219(4):1156-1169 PubMed
Ecol Evol. 2018 Jan 15;8(4):1932-1944 PubMed
New Phytol. 2017 May;214(3):1103-1117 PubMed
Ecol Lett. 2012 May;15(5):393-405 PubMed
PLoS One. 2015 Apr 23;10(4):e0124892 PubMed
Plant Cell Environ. 2017 Sep;40(9):1861-1873 PubMed
Nature. 2004 Apr 22;428(6985):821-7 PubMed
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):E7222-E7230 PubMed
New Phytol. 2016 Mar;209(4):1553-65 PubMed
Planta. 1972 Sep;108(3):259-70 PubMed
New Phytol. 2014 Apr;202(1):79-94 PubMed
Tree Physiol. 2010 Dec;30(12):1545-54 PubMed
Nature. 2000 Feb 24;403(6772):853-8 PubMed
Oecologia. 2007 Aug;153(2):245-59 PubMed
Tree Physiol. 1987 Dec;3(4):309-20 PubMed
Plant Cell Environ. 2013 Apr;36(4):879-91 PubMed